Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Stoneham, J. Phys.: Cond. Mat. 22, 074211 (2010).
2.A. N. Andriotis, R. M. Sheetz, and M. Menon, J. Phys.: Cond. Mat. 22, 334210 (2010).
3.O. Volnianska and P. Boguslawski, J. Phys.: Cond. Mat. 22, 073202 (2010).
4.O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
5.Shengqiang Zhou, Nucl. Instr. Meth. B 326, 5560 (2014).
6.P. Esquinazi, W. Hergert, D. Spemann, A. Setzer, and A. Ernst, IEEE Transactions on Magnetics 49(8), 46684674 (2013).
7.C. N. R. Rao, H. S. S. Ramakrishna Matte, K. S. Subrahmanyam, and Urmimala Maitra, Chem. Sci. 3, 4552 (2012).
8.Jia Zhang, Jia Mei Soon, Kian Ping Loh, Jianhua Yin, Jun Ding, Michael B. Sullivian, and Ping Wu, Nano Lett. 7(8), 23702376 (2007).
9.Y. Kopelevich, P. Esquinazi, J. Torres, and S. Moehlecke, J. Low Temp. Phys. 119, 691702 (2000).
10.P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche, Phys. Rev. B 66, 024429–1–10 (2002).
11.P. Esquinazi, J. Barzola-Quiquia, D. Spemann, M. Rothermel, H. Ohldag, N. García, A. Setzer, and T. Butz, J. Magn. Magn. Mater. 322, 11561161 (2010).
12.M. Sepioni, R. R. Nair, I. L. Tsai, A. K. Geim, and I. V. Grigorieva, EPL 97, 47001 (2012).
13.R. R. Nair, M. Sepioni, I. L. Tsai, O. Lethinen, O. Keinonen, A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V. Grigorieva, Nat. Phys. 8, 199202, Supplementary information #4 (2012).
14.D. Spemann, M. Rothermel, P. Esquinazi, M. Ramos, Y. Kopelevich, and H. Ohldag, EPL 98, 57006 (2012);
14.See also reply by M. Sepioni et al., EPL 98, 57007 (2012).
15.M. Venkatesan, P. Dunne, Y. H. Chen, H. Z. Zhang, and J. M. D. Coey, Carbon 56, 279287 (2013).
16.The HOPG samples were purchased from the following companies: Momentive Performance Materials Quartz GmbH, Borsigstraße 1–7, D-21502 Geesthacht (AC ZYA and AC ZYH); Advanced Ceramics Corporation, 11907 Madison Ave, Lakewood, Ohio 44107, USA (AC ZYB); NT-MDT Co., Building 167, Zelenograd, Moscow, 124460, Russia; SPI Supplies, Structure Probe, Inc. 569 East Gay Street West Chester, PA 19380, USA.
17.T. Butz, R.-H. Flagmeyer, J. Heitmann, D. N. Jamieson, G. J. F. Legge, D. Lehmann, U. Reibetanz, T. Reinert, A. Saint, D. Spemann, R. Szymanski, W. Tröger, J. Vogt, and J. Zhu, Nucl. Instr. Meth. B 161–163, 323327 (2000).
18.S. A. E. Johansson, J. L. Campbell, and K. G. Malmqvist, Particle-Induced X-Ray Emission Spectrometry (PIXE) (John Wiley & Sons, Inc., New York, 1995).
19.W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978).
20.D. Spemann, T. Reinert, J. Vogt, T. Andrea, N. Barapatre, R. Feder, A. M. Jakob, N. Liebing, Ch. Meinecke, F. Menzel, M. Rothermel, and T. Butz, Nucl. Instr. Meth. B 269, 21752179 (2011).
21.J. Ziegler, M. Ziegler, and J. Biersack, Nucl. Instr. Meth. B 268, 18181823 (2010), See also
22.C. G. Ryan, Nucl. Instr. Meth. B 181, 170179 (2001).
23.See supplementary material at for details on PIXE method, visualization of impurity grains and their variation among different samples, EDX analysis of single grains in AC ZYA, and a motivation for the approach to extract the temperature dependence of the magnetization from remanence data.[Supplementary Material]
24.L. Doolittle, Nucl. Instr. Meth. B 9, 344351 (1985).
25.J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, and N. García, Phys. Rev. B 76, 161403R (2007).
26.M. A. Ramos, J. Barzola-Quiquia, P. Esquinazi, A. Muñoz Martin, A. Climent-Font, and M. García-Hernández, Phys. Rev. B 81, 214404 (2010).
27.E. Oberg, Machinery’s Handbook, 25th edition (Industrial Press Inc., 1996).
28.MIKROMASCH, Highly ordered pyrolytic graphite, 04.09.2013).
29.A. Tsuzuki, S. Sago, S. I. Hirano, and S. Naka, J. Mat. Sci. 19, 25132518 (1984).
30.A. Vočadlo, J. Brodholt, D. P. Dobson, K. S. Knight, W. G. Marschall, G. D. Price, and I. G. Wood, Earth and Planetary Science Lett. 203, 567575 (2002).
31.A. Talyzin, A. Dzwilewski, L. Dubrovinsky, A. Setzer, and P. Esquinazi, Eur. Phys. J. B 55, 5762 (2007).
32.R. Höhne, P. Esquinazi, V. Heera, H. Weishart, A. Setzer, and D. Spemann, J. Magn. Magn. Mater. 320, 966977 (2008).
33.F. Stäblein and K. Schroetter, Z. Anorg. u. Allg. Chem. 174, 193215 (1928).
34.B. Barbara, A. Marchand, P. Mollard, X. Devaux, and A. Rousset, in Magnetic Properties of Fine Particles, edited by J. L. Dormann and D. Fiorani (North-Holland, Amsterdam, 1992), pp. 171177.
35.K. O’Grady and R. W. Chantrell, in Magnetic Properties of Fine Particles, edited by J. L. Dormann and D. Fiorani (North-Holland, Amsterdam, 1992), pp. 93102.
36.K. Lipert, J. Kaźmierczak, I. Pełech, U. Narkiewicz, A. Ślawska Waniewska, and H.K. Lachowicz, Materials Science-Poland 25, 399404 (2007).
37.C. Kittel, Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, Inc, 1996), p. 455.
38.H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T.-W. Wang, D. Zhu, J. Gong, and Z. Zhu, Adv. Mater. 20, 46794683 (2008).
39.H. Ohldag, P. Esquinazi, E. Arenholz, D. Spemann, M. Rothermel, A. Setzer, and T. Butz, New Journal of Physics 12, 123012 (2010).
40.W. Döring, Z. Naturforsch. A16, 1008 (1961).
41.A. P. Levanyuk and N. García, J. Phys.: Cond. Mat. 4, 10277 (1992).
42.P. A. Serena, N. García, and A. P. Levanyuk, Phys. Rev. B 47, 5027 (1993).
43.E. Brezin and J. Zin-Justin, Phys. Rev. B 14, 3110 (1976).
44.B. Martínez, A. Roig, X. Obradors, E. Molins, A. Rouanet, and C. Monty, J. Appl. Phys. 79, 25802586 (1996).
45.M. Inagaki, New Carbons: Control of Structure and Functions , ISBN: 0080437133 (Elsevier, 2000).
46.A. M. Navarro, L. A. Errico, C. R. Torres, A. F. Cabrera, V. Bilovol, and M. Rentería et al., in Rutile – Properties, Synthesis and Applications, edited by I. M. J. Low (Nova Science Publishers, New York, 2012), pp. 159194.
47.A. M. Navarro, C. R. Torres, V. Bilovol, A. F. Cabrera, L. A. Errico, and M. Weissmann, J. Appl. Phys. 115, 223908 (2014).
48.X. Miao, S. Tongay, and A. F. Hebard, Carbon 50, 16141618 (2012).

Data & Media loading...


Article metrics loading...



In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or FeC. For most samples the temperature dependence of the remanence decreases linearly with – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd