Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Stergiou, E. Eleftheriou, and V. Zaspalis, IEEE Trans. Magn. 48, 1497 (2012).
2.A. O. Karilainen, P. M. T. Ikonen, C. R. Simovski, S. A. Tretyakov, A. N. Lagarkov, S. A. Maklakov, K. N. Rozanov, and S. N. Starostenko, IET Microwaves, Antennas Propagat. 5, 495 (2011).
3.J. Sohn, S. H. Han, M. Yamaguchi, and S. H. Lim, Appl. Phys. Lett. 89, 103501 (2006).
4.K. N. Rozanov, IEEE Trans. Antennas Propagat. 48, 1230 (2000).
5.G. Perrin, O. Acher, J. C. Peuzin, and N. Vucadinovich, J. Magn. Magn. Mater. 157/158, 289 (1996).
6.R. M. Walser, W. Win, and P. M. Valanju, IEEE Trans. Magn. 34, 1390 (1998).
7.A. L. Adenot, O. Acher, T. Taffary, and L. Longuet, J. Appl. Phys. 91, 7601 (2002).
8.J. Torrejon, A.-L. Adenot-Engelvin, F. Bertin, V. Dubuget, O. Acher, and M. Vazquez, J. Magn. Magn. Mater. 321, 1227 (2009).
9.G. Z. Chai, D. S. Xue, X. L. Fan, X. L. Li, and D. W. Guo, Appl. Phys. Lett. 93, 152516 (2008).
10.I. T. Iakubov, A. N. Lagarkov, S. A. Maklakov, A. V. Osipov, K. N. Rozanov, I. A. Ryzhikov, V. V. Samsonova, and A. O. Sboychakov, J. Magn. Magn. Mater. 321, 726 (2009).
11.F. Ma, Y. Qin, and Y. Z. Li, Appl. Phys. Lett. 96, 202507 (2010).
12.Z. W. Li, Z. H. Yang, and L. B. Kong, Appl. Phys. Lett. 96, 092507 (2010).
13.K. Buell, H. Mosallaei, and K. Sarabandi, IEEE Trans. Microw. Theory Techn. 54, 135 (2006).
14.S. Bae, Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, W. M. Seong, and J. S. Kum, J. Appl. Phys. 105, 07A515 (2009).
15.V. G. Harris, “Modern Microwave Ferrites,” IEEE Trans. Magn. 48, 1075 (2012).
16.E. van de Riet and F. Roozeboom, J. Appl. Phys. 81, 350 (1997).
17.J. B. Youssef, N. Vukadinovic, D. Billet, and M. Labrune, Phys. Rev. B 69, 174402 (2004).
18.R. M. Walser and R. J. Hach, U.S. Patent 350047 (10 November 1970).
19.I. T. Iakubov, A. N. Lagarkov, S. A. Maklakov, A. V. Osipov, K. N. Rozanov, I. A. Ryzhikov, and S. N. Starostenko, J. Magn. Magn. Mater. 272–276, 2208 (2004).
20.H. B. Zhang, P. H. Zhou, H. P. Lu, Y. Q. Xu, J. L. Xie, and L. J. Deng, El. Lett. 48, 435 (2012).
21.A. N. Lagarkov, I. T. Iakubov, I. A. Ryzhikov, K. N. Rozanov, N. S. Perov, E. P. Elsukov, S. A. Maklakov, A. V. Osipov, M. V. Sedova, A. M. Getman, and A. L. Ulyanov, Physica B 394, 159 (2007).
22.K. N. Rozanov, I. T. Iakubov, A. N. Lagarkov, S. A. Maklakov, A. V. Osipov, D. A. Petrov, I. A. Ryzhikov, M. V. Sedova, and S. N. Starostenko, in MSMW’07 Symp. Proc. Kharkov, Ukraine, 25–30 June, 2007 , pp. 168173.
23.S. N. Starostenko, K. N. Rozanov, and A. V. Osipov, J. Appl. Phys. 103, 07E914 (2008).
24.K. N. Rozanov and M. Y. Koledintseva, in Proc. IEEE Int. Symp. Electromagn. Compat., Denver CO, Aug. 4–10, 2013 , pp. 551556.
25.M. Han, D. Liang, K. N. Rozanov, and L. Deng, IEEE Trans. Magn. 49, 982 (2013).
26.I. T. Iakubov, O. Y. Kashurkin, A. N. Lagarkov, S. A. Maklakov, A. V. Osipov, K. N. Rozanov, I. A. Ryzhikov, and S. N. Starostenko, J. Magn. Magn. Mater. 324, 3385 (2012).
27.N. A. Buznikov and K. N. Rozanov, J. Magn. Magn. Mater. 285, 314 (2005).
28.R. Benato, F. Dughiero, M. Forzan, and A. Paolucci, IEEE Trans. Magn. 38, 781 (2002).
29.O. Acher and S. Dubourg, Phys. Rev. B 77, 104440 (2008).

Data & Media loading...


Article metrics loading...



The paper reports on development of magnetodielectric material with high microwave permeability. The material is a laminate of multi-layer permalloy films deposited onto a thin mylar substrate by magnetron sputtering. The deposited films are arranged into a stack and glued together under pressure to obtain the laminate. With the content of ferromagnetic component in the laminate being 22 % vol., its measured quasistatic permeability is 60. The peak value of imaginary permeability attains 50 and the peak is located near 1 GHz. As compared with the multi-layer films, which the laminate is made of, it exhibits lower magnetic loss tangent at frequencies below the magnetic loss peak and may therefore be useful for many technical applications. Lower low-frequency loss may be attributed to pressing of the glued sample. This rectifies wrinkling appearing due to sputtering of rigid multi-layer film onto flexible mylar substrate and, therefore, makes the magnetic structure of the film more uniform.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd