Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901177
1.
1.A. Sawa, Materials Today 11(6), 2836 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
2.
2.R. C. Davide, J. Am. Ceram. Soc. 82(3), 485502 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01793.x
3.
3.S. Y. Chung, I. D. Kim, and S. J. Kang, Nature materials 3(11), 774778 (2004).
http://dx.doi.org/10.1038/nmat1238
4.
4.K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nature materials 5(4), 312320 (2006).
http://dx.doi.org/10.1038/nmat1614
5.
5.A. N. Lavrov, I. Tsukada, and Y. Ando, Physical Review B 68(9), 9 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.094506
6.
6.S. Lee, A. Fursina, J. T. Mayo, C. T. Yavuz, V. L. Colvin, R. G. Sofin, I. V. Shvets, and D. Natelson, Nature materials 7(2), 130133 (2008).
http://dx.doi.org/10.1038/nmat2084
7.
7.M. Fiebig, K. Miyano, Y. Tomioka, and Y. Tokura, Science 280(5371), 19251930 (1998).
http://dx.doi.org/10.1126/science.280.5371.1925
8.
8.A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Applied Physics Letters 85(18), 40734075 (2004).
http://dx.doi.org/10.1063/1.1812580
9.
9.L. J. Zeng, H. X. Yang, Y. Zhang, H. F. Tian, C. Ma, Y. B. Qin, Y. G. Zhao, and J. Q. Li, Epl 84(5 ) (2008).
http://dx.doi.org/10.1209/0295-5075/84/57011
10.
10.Y. D. Chuang, A. D. Gromko, D. S. Dessau, T. Kimura, and Y. Tokura, Science 292(5521), 15091513 (2001).
http://dx.doi.org/10.1126/science.1059255
11.
11.D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu, and J. M. Tranquada, Nature 440(7088), 11701173 (2006).
http://dx.doi.org/10.1038/nature04704
12.
12.J. van den Brink and D. I. Khomskii, Journal of Physics: Condensed Matter 20(43), 434217 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434217
13.
13.N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature 436(7054), 11361138 (2005).
http://dx.doi.org/10.1038/nature04039
14.
14.D. V. Efremov, J. Van den Brink, and D. I. Khomskii, Nature materials 3(12), 853856 (2004).
http://dx.doi.org/10.1038/nmat1236
15.
15.H. X. Yang, H. F. Tian, Y. J. Song, Y. B. Qin, Y. G. Zhao, C. Ma, and J. Q. Li, Physical Review Letters 106(1), 016406 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.016406
16.
16.Y. J. Song, H. X. Yang, H. F. Tian, C. Ma, Y. B. Qin, L. J. Zeng, H. L. Shi, J. B. Lu, and J. Q. Li, Physical Review B 81(2), 020101(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.020101
17.
17.A. Von Hippel and R. Alger, Physical Review 76(1), 127133 (1949).
http://dx.doi.org/10.1103/PhysRev.76.127
18.
18.S. Cao, J. Li, H. F. Tian, Y. B. Qin, L. J. Zeng, H. X. Yang, and J. Q. Li, Applied Physics Letters 98(10), 102102 (2011).
http://dx.doi.org/10.1063/1.3562314
19.
19.A. Akrap, M. Angst, P. Khalifah, D. Mandrus, B. C. Sales, and L. Forró, Physical Review B 82(16), 165106 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165106
20.
20.G. Y. Hutiray and J. Solyom, Charge Density Wave in Solids (Spring, Berlin, 1985).
21.
21.S. Cox, J. Singleton, R. D. McDonald, A. Migliori, and P. B. Littlewood, Nature materials 7(1), 2530 (2008).
http://dx.doi.org/10.1038/nmat2071
22.
22.R. Kumai, Y. Okimoto, and Y. Tokura, Science 284(5420), 16451647 (1999).
http://dx.doi.org/10.1126/science.284.5420.1645
23.
23.Y. F. Chen and M. Ziese, Journal of Applied Physics 101(10), 7 (2007).
24.
24.Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Physical Review Letters 96(20), 4 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901177
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901177
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901177
2014-11-03
2016-09-29

Abstract

Strong nonlinear resistance has been found in the charge ordered ferroelectric iron oxyborate (FeOBO) with a high dielectric constant and giant converse magnetoelectric effect. In low temperature range the I-V nonlinearity increases quickly with decreasing temperature. Transport measurements on polycrystalline and single crystal FeOBO indicate that the nonlinearity is not induced by grain boundaries. The nonlinear - behavior is intrinsically correlated with the charge order phase melting in FeOBO by detailed TEM investigations. These results provide an insight into structure-activity relationship of resistance switching effects at atomic and electric scales, which is essential for its potential application as varistors and storage media.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901177.html;jsessionid=TJO6fWDZZ3a6GSR_sF3fBPrt.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901177&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901177'
Right1,Right2,Right3,