Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901184
1.
1.W. Eerenstein, N. Mathur, and J. Scott, Nature 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
2.
2.V. E. Wood, A. Austin, A. Freeman, and H. Schmid, Gordon and Breach Science Publishers, Newark, New York, 181 (1975).
3.
3.M. Fiebig, T. Lottermoser, D. Frohlich, A. Golsev, and R. Pisarev, Nature 419, 819 (2002).
http://dx.doi.org/10.1038/nature01077
4.
4.N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
http://dx.doi.org/10.1021/jp000114x
5.
5.S. Wu, S. A. Cybart, P. Yu, M. Rossell, J. Zhang, R. Ramesh, and R. Dynes, Nat. Mater. 9(9), 756 (2010).
http://dx.doi.org/10.1038/nmat2803
6.
6.Z. Chi, H. Yang, S. Feng, F. Li, R. Yu, and C. Jin, J. Magn. Magn. Mater. 310(2), 358 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.335
7.
7.T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B 67(18), 180401 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.180401
8.
8.C.-H. Yang, T. Koo, S.-H. Lee, C. Song, K.-B. Lee, and Y. Jeong, Europhys. Lett. 74(2), 348 (2006).
http://dx.doi.org/10.1209/epl/i2005-10540-1
9.
9.W. Prellier, M. Singh, and P. Murugavel, J. Phys.: Condens. Matter. 17(30), R803 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/R01
10.
10.R. Seshadri and N. A. Hill, Chem. Mater. 13(9), 2892 (2001).
http://dx.doi.org/10.1021/cm010090m
11.
11.A. Moreira dos Santos, S. Parashar, A. Raju, Y. Zhao, A. Cheetham, and C. Rao, Solid State Commun. 122(1), 49 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00087-X
12.
12.N. A. Hill and K. M. Rabe, Phys. Rev. B 59(13), 8759 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8759
13.
13.A. F. Moreira dos Santos, A. K. Cheetham, W. Tian, X. Pan, Y. Jia, N. J. Murphy, J. Lettieri, and D. G. Schlom, Appl. Phys. Lett. 84(1), 91 (2004).
http://dx.doi.org/10.1063/1.1636265
14.
14.J. Son, B. G. Kim, C. Kim, and J. Cho, Appl. Phys. Lett. 84(24), 4971 (2004).
http://dx.doi.org/10.1063/1.1762974
15.
15.M. Gajek, M. Bibes, A. Barthélémy, K. Bouzehouane, S. Fusil, M. Varela, J. Fontcuberta, and A. Fert, Phys. Rev. B 72(2), 020406 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.020406
16.
16.W. Eerenstein, F. Morrison, J. Scott, and N. Mathur, Appl. Phys. Lett. 87(10), 101906 (2005).
http://dx.doi.org/10.1063/1.2039988
17.
17.M. Grizalez, G. Mendoza, and P. Prieto, Journal of Physics: Conference Series (2009).
18.
18.I. Troyanchuk, O. Mantytskaya, and A. Chobot, Phys. Solid State 44(12), 2266 (2002).
http://dx.doi.org/10.1134/1.1529922
19.
19.D. Wang, W. Goh, M. Ning, and C. Ong, Appl. Phys. Lett. 88(21), 212907 (2006).
http://dx.doi.org/10.1063/1.2208266
20.
20.V. Khomchenko, D. Kiselev, J. Vieira, A. Kholkin, M. , and Y. Pogorelov, Appl. Phys. Lett. 90(24), 242901 (2007).
http://dx.doi.org/10.1063/1.2747665
21.
21.D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, A. Banerjee, S. Gupta, and A. Awasthi, Appl. Phys. Lett. 91(20), 202505 (2007).
http://dx.doi.org/10.1063/1.2806199
22.
22.K. S. Pugazhvadivu, L. Balakrishnan, and K. Tamilarasan, Mater. Lett. 77, 48 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.02.101
23.
23.J. Lee, X. Ke, R. Misra, J. Ihlefeld, X. Xu, Z. Mei, T. Heeg, M. Roeckerath, J. Schubert, and Z. Liu, Appl. Phys. Lett. 96(26), 262905 (2010).
http://dx.doi.org/10.1063/1.3457786
24.
24.M. Dar and K. Akram, J. Supercond. Nov. Magn. 27(2), 613 (2014).
http://dx.doi.org/10.1007/s10948-013-2326-x
25.
25.D. Kumar and D. Kaur, Physica B: Condensed Matter 405(16), 3259 (2010).
http://dx.doi.org/10.1016/j.physb.2010.04.056
26.
26.W. Eerenstein, F. Morrison, J. Dho, M. Blamire, J. Scott, and N. Mathur, Science 307(5713), 1203 (2005).
http://dx.doi.org/10.1126/science.1105422
27.
27.H. Woo, T. Tyson, M. Croft, S. Cheong, and J. Woicik, Phys. Rev. B 63(13), 134412 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.134412
28.
28.P. Pandit, S. Satapathy, P. Sharma, P. Gupta, S. Yusuf, and V. Sathe, Bull. Mater. Sci. 34(4), 899 (2011).
http://dx.doi.org/10.1007/s12034-011-0212-3
29.
29.A. Farid, H. Atyia, and N. Hegab, Vacuum 80(4), 284 (2005).
http://dx.doi.org/10.1016/j.vacuum.2005.05.003
30.
30.T. Choi and J. Lee, Appl. Phys. Lett. 84(24), 5043 (2004).
http://dx.doi.org/10.1063/1.1763642
31.
31.A. M. dos Santos, A. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, and C. Rao, Phys. Rev. B 66(6), 064425 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.064425
32.
32.D. Sedmidubský, J. Leitner, and O. Beneš, Calphad 30(2), 179 (2006).
http://dx.doi.org/10.1016/j.calphad.2005.09.003
33.
33.J.-Z. Huang, Y. Wang, Y. Lin, M. Li, and C. Nan, J. Appl. Phys. 106(6), 063911 (2009).
http://dx.doi.org/10.1063/1.3225559
34.
34.A. Molak, Z. Ujma, M. Pilch, I. Gruszka, and M. Pawelczyk, Ferroelectrics 464(1), 59 (2014).
http://dx.doi.org/10.1080/00150193.2014.892815
35.
35.J. Son, C. Park, and H. Kim, Met.Mater. Int. 16(2), 289 (2010).
http://dx.doi.org/10.1007/s12540-010-0419-7
36.
36.H.-H. Park, S. Yoon, H.-H. Park, and R. H. Hill, Thin Solid Films 447, 669 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.09.005
37.
37.R. Singh and S. Chandra, IEEE Transactions 11(2), 264 (2004).
http://dx.doi.org/10.1109/TDEI.2004.1285896
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901184
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901184
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901184
2014-11-03
2016-09-29

Abstract

BiCaMnO (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the -type Si (100) substrate at two different temperatures of 400 °C and 800 °C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca2+ ions into BiMnO films. The BCMO (x = 0.2) film grown at 400 °C shows better magnetization (M) and polarization (P)with the measured values of 869 emu / cc and 6.6 μ/ cm2 respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca2+ ions substituted BMO films makes potentially interesting for spintronic device applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901184.html;jsessionid=R3kdC9RShMlFvFCK1dZ3bXiQ.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901184&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901184&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901184'
Right1,Right2,Right3,