Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. Ahmed, D. S. Akerib, S. Arrenberg, C. N. Bailey, D. Balakishiyeva, L. Baudis, D. A. Bauer, P. L. Brink, T. Bruch, R. Bunker et al., Phys. Rev. Lett. 106, 131302 (2012).
2.J. J. Yen, B. Shank, B. A. Young, B. Cabrera, P. L. Brink, M. Cherry, J. M. Kreikebaum, R. Moffatt, P. Redl, A. Tomada, and E. C. Tortorici, “Measurement of Quasiparticle Transport in Aluminum Films Using Tungsten Transition-Edge Sensors,” Appl. Phys. Lett. 105, 163504 (2014).
3.T. Saab, E. Apodacas, S. Bandler, K. Boyce, J. Chervenak, E. Figueroa-Feliciano, F. Finkbeiner, C. Hammock, R. Kelley, M. Lindeman, F. S. Porter, and C. K. Stahle, “Characterization and modeling of transition edge sensors for high resolution X-ray calorimeter arrays,” LTD-10, 10th International Workshop on Low Temperature Detectors; NIM A 520, 281284 (2004).
4.D. J. Fixsen, S. H. Moseley, T. Gerrits, A. E. Lita, and S. W. Nam, “Optimal Energy Measurement in Nonlinear Systems,” J. Low Temp. Phys 176, 1626 (2014).
5.M. Pyle, P. L. Brink, B. Cabrera, J. P. Castle, P. Colling, C. L. Chang, J. Cooley, T. Lipus, R. W. Ogburn, and B. A. Young, “Quasiparticle propagation in aluminum fins and tungsten TES dynamics in the CDMS ZIP detector,” LTD-11, 11th International Workshop on Low Temperature Detectors; NIM A 559, 405407 (2006).
6.C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 1986).
7.D. L. Goodstein, A. W. Hartera, and T. C. P. Chuib, “Heat capacity of a current carrying superconductor,” Phys. Lett. A 245, 477478 (1998).
8.J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197A1207 (1965).
9.M. Lindeman, S. Bandler, R. P. Brekosky, J. A. Chervenak, E. Figueroa-Feliciano, F. Finkbeiner, M. J. Li, and C. A. Kilbourne, “Impedance measurements and modeling of a transition-edge-sensor calorimeter,” Rev. Sci. Instrum. 75, 1283 (2004).
10.J. Burney, Transition-Edge Sensor Imaging Arrays For Astrophysics Applications , PhD thesis, Stanford University, 2006 p. 25.
11.S. H. Moseley, J. C. Mather, and D. McCammon, “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 12571262 (1984).
12.K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Applied Physics Letters 66(15), 19982000 (1995).
13.A. G. Kozorezov, C. J. Lambert, S. Bandler, M. A. Balvin, S. E. Busch, P. N. Nagler, J. Porst, S. J. Smith, T. R. Stevenson, and J. E. Sadleir, “Athermal energy loss from x-rays deposited in thin superconducting films on solid substrates,” Phys. Rev. B 87, 104504 (2013).

Data & Media loading...


Article metrics loading...



We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd