Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901910
1.
1.J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shan, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
http://dx.doi.org/10.1038/nmat2162
2.
2.S. Nie and S. R. Emory, Science 275, 1102 (1997).
http://dx.doi.org/10.1126/science.275.5303.1102
3.
3.S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001).
http://dx.doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
4.
4.J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
http://dx.doi.org/10.1038/nmat2630
5.
5.H. Chen, L. Shao, K. Woo, T. Ming, H. Lin, and J. Wang, J. Phys. Chem. C 113, 17691 (2009).
http://dx.doi.org/10.1021/jp907413n
6.
6.L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
http://dx.doi.org/10.1021/nl0515753
7.
7.Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, J. Appl. Phys. 103, 014308 (2008).
http://dx.doi.org/10.1063/1.2828146
8.
8.J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.057401
9.
9.C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
http://dx.doi.org/10.1021/nl052409y
10.
10.J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, Adv. Mater. 17, 2121 (2005).
http://dx.doi.org/10.1002/adma.200500063
11.
11.H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, Appl. Phys. Lett. 80, 1826 (2002).
http://dx.doi.org/10.1063/1.1461072
12.
12.G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, Nano Lett. 4, 1853 (2004).
http://dx.doi.org/10.1021/nl049038q
13.
13.E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
http://dx.doi.org/10.1126/science.1089171
14.
14.S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, Langmuir 22, 7109 (2006).
http://dx.doi.org/10.1021/la0605844
15.
15.M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
http://dx.doi.org/10.1364/OL.35.000760
16.
16.E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, Nano Lett. 7, 1256 (2007).
http://dx.doi.org/10.1021/nl0701612
17.
17.C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, Appl. Phys. Lett. 98, 153108 (2011).
http://dx.doi.org/10.1063/1.3579536
18.
18.Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, Nano Lett. 12, 4881 (2012).
http://dx.doi.org/10.1021/nl302428z
19.
19.T. Wang, J. Zhang, X. Zhang, P. Xue, H. Chen, X. Li, Y. Yu, and B. Yang, J. Mater. Chem. C 1, 1122 (2013).
http://dx.doi.org/10.1039/c2tc00302c
20.
20.C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, Opt. Express 21, 14090 (2013).
http://dx.doi.org/10.1364/OE.21.014090
21.
21.W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, and B. Lamprecht, Opt. Commun. 220, 137 (2003).
http://dx.doi.org/10.1016/S0030-4018(03)01357-9
22.
22.C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, J. Phys. Chem. B 107, 7337 (2003).
http://dx.doi.org/10.1021/jp034234r
23.
23.G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006);
http://dx.doi.org/10.1364/OL.31.001800
23.C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, Opt. Express 17, 6026 (2009).
http://dx.doi.org/10.1364/OE.17.006026
24.
24.F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, Acs Nano 2, 707 (2008).
http://dx.doi.org/10.1021/nn800047e
25.
25.Y. Francescato, V. Giannini, and S. A. Maier, Acs nano 6, 1830 (2012).
http://dx.doi.org/10.1021/nn2050533
26.
26.G. T. Forcherio, P. Blake, D. Dejarnette, and D. K. Ropter, Opt. Express 22, 17791 (2014).
http://dx.doi.org/10.1364/OE.22.017791
27.
27.Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
http://dx.doi.org/10.1063/1.3533953
28.
28.H. Jiang and J. Sabarinathan, J. Phys. Chem. C 114, 15243 (2010).
http://dx.doi.org/10.1021/jp1003598
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901910
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901910
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901910
2014-11-11
2016-09-28

Abstract

In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901910.html;jsessionid=gVmik0NDPuaG5UuQyngWFQ1q.x-aip-live-02?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901910&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901910&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901910'
Right1,Right2,Right3,