Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shan, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008).
2.S. Nie and S. R. Emory, Science 275, 1102 (1997).
3.S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501 (2001).<1501::AID-ADMA1501>3.0.CO;2-Z
4.J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nat. Mater. 9, 193 (2010).
5.H. Chen, L. Shao, K. Woo, T. Ming, H. Lin, and J. Wang, J. Phys. Chem. C 113, 17691 (2009).
6.L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
7.Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, J. Appl. Phys. 103, 014308 (2008).
8.J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
9.C. L. Nehl, H. Liao, and J. H. Hafner, Nano Lett. 6, 683 (2006).
10.J. S. Shumaker-Parry, H. Rochholz, and M. Kreiter, Adv. Mater. 17, 2121 (2005).
11.H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, Appl. Phys. Lett. 80, 1826 (2002).
12.G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kürzinger, Nano Lett. 4, 1853 (2004).
13.E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
14.S. Kim, J.-M. Jung, D.-G. Choi, H.-T. Jung, and S.-M. Yang, Langmuir 22, 7109 (2006).
15.M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
16.E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, Nano Lett. 7, 1256 (2007).
17.C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, Appl. Phys. Lett. 98, 153108 (2011).
18.Y. Cai, Y. Li, P. Nordlander, and P. S. Cremer, Nano Lett. 12, 4881 (2012).
19.T. Wang, J. Zhang, X. Zhang, P. Xue, H. Chen, X. Li, Y. Yu, and B. Yang, J. Mater. Chem. C 1, 1122 (2013).
20.C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, Opt. Express 21, 14090 (2013).
21.W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, and B. Lamprecht, Opt. Commun. 220, 137 (2003).
22.C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, J. Phys. Chem. B 107, 7337 (2003).
23.G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006);
23.C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, Opt. Express 17, 6026 (2009).
24.F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, Acs Nano 2, 707 (2008).
25.Y. Francescato, V. Giannini, and S. A. Maier, Acs nano 6, 1830 (2012).
26.G. T. Forcherio, P. Blake, D. Dejarnette, and D. K. Ropter, Opt. Express 22, 17791 (2014).
27.Y. Gu, Q. Li, J. Xiao, K. Wu, and G. P. Wang, J. Appl. Phys. 109, 023104 (2011).
28.H. Jiang and J. Sabarinathan, J. Phys. Chem. C 114, 15243 (2010).

Data & Media loading...


Article metrics loading...



In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd