Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901911
1.
1.H. B. Zhang, M. Richter, K. Koepernik, I. Opahle, F. Tasnádi, and H. Eschrig, New J. Phys. 11, 043007 (2009).
http://dx.doi.org/10.1088/1367-2630/11/4/043007
2.
2.S. Brivio, D. Petti, R. Bertacco, and J. C. Cezar, Appl. Phys. Lett. 98, 102506 (2011).
http://dx.doi.org/10.1063/1.3564885
3.
3.Z. G. Wang, Y. D. Yang, R. Viswan, J. F. Li, and D. Viehland, Appl. Phys. Lett. 99, 043110 (2011).
http://dx.doi.org/10.1063/1.3619836
4.
4.H. C. Xuan, L. Y. Wang, Y. X. Zheng, Y. L. Li, Q. Q. Cao, S. Y. Chen, D. H. Wang, Z. G. Huang, and Y. W. Du, Appl. Phys. Lett. 99, 032509 (2011).
http://dx.doi.org/10.1063/1.3616137
5.
5.M. Weiler, A. Brandlmaier, S. Geprägs, M. Althammer, M. Opel, C. Bihler, H. Huebl, M. S. Brandt, R. Gross, and S. T. B. Goennenwein, New J. Phys. 11, 013021 (2009).
http://dx.doi.org/10.1088/1367-2630/11/1/013021
6.
6.J. H. Kim, K. S. Ryu, J. W. Jeong, and S. C. Shin, Appl. Phys. Lett. 97, 252508 (2010).
http://dx.doi.org/10.1063/1.3531648
7.
7.A. Mardana, S. Ducharme, and S. Adenwalla, Nano Lett. 11, 3862 (2011).
http://dx.doi.org/10.1021/nl201965r
8.
8.A. S. Zyazin, J. W. G. Berg, E. A. Osorio, H. S. J. van der Zant, N. P. Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli, and A. Cornia, Nano Lett. 10, 3307 (2010).
http://dx.doi.org/10.1021/nl1009603
9.
9.T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat Nanotechnol. 4, 158 (2009).
http://dx.doi.org/10.1038/nnano.2008.406
10.
10.S. J. Gamble, M. H. Burkhardt, A. Kashuba, R. Allenspach, S. S. P. Parkin, H. C. Siegmann, and J. Stohr, Phys. Rev. Lett. 102, 217201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.217201
11.
11.Z. Li, J. Wang, Y. H. Lin, and C. W. Nan, Appl. Phys. Lett. 96, 162505 (2010).
http://dx.doi.org/10.1063/1.3405722
12.
12.T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, Sci. Rep. 2, 258 (2012).
http://dx.doi.org/10.1038/srep00258
13.
13.T-K. Chung, S. Keller, and G. P. Carman, Appl. Phys. Lett. 94, 132501 (2009).
http://dx.doi.org/10.1063/1.3110047
14.
14.C. J. Hsu, J. L. Hockel, and G. P. Carman, Appl. Phys. Lett. 100, 092902 (2012).
http://dx.doi.org/10.1063/1.3690953
15.
15.G. Venkataiah, E. Wada, H. Taniguchi, M. Itoh, and T. Taniyama, J. Appl. Phys. 113, 17C701 (2013).
http://dx.doi.org/10.1063/1.4793511
16.
16.A. E. Clark, J. B. Restorff, M. Wun-Fogle, T. A. Lograsso, and D. L. Schlagel, IEEE Trans. Magn. 36, 3238 (2000).
http://dx.doi.org/10.1109/20.908752
17.
17.J. Atulasimha and A. B Flatau, Smart Mater. Struct. 20, 043001 (2011).
http://dx.doi.org/10.1088/0964-1726/20/4/043001
18.
18.A. Mahadevan, P. G. Evans, and M. J. Dapino, Appl. Phys. Lett. 96, 012502 (2010).
http://dx.doi.org/10.1063/1.3280374
19.
19.R. A. Kellogg, A. B. Flatau, A. E. Clark, M. Wun-Fogle, and T. A. Lograsso, J. Appl. Phys. 91, 7821 (2002).
http://dx.doi.org/10.1063/1.1452216
20.
20.R. G. Rhodes, Acta Crystallogr. 4, 105 (1951).
http://dx.doi.org/10.1107/S0365110X51000374
21.
21.R. Clarke, J. Appl. Crystallogr. 9, 335 (1976).
http://dx.doi.org/10.1107/S0021889876011436
22.
22.M. L. Mulvihill, K. Uchino, Z. Li, and W. Cao, Philos. Mag. B 74, 25 (1996).
http://dx.doi.org/10.1080/01418639608240325
23.
23.M. K. Lee, T. K. Nath, C. B. Eom, M. C. Smoak, and F. Tsui, Appl. Phys. Lett. 77, 3547 (2000).
http://dx.doi.org/10.1063/1.1328762
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901911
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901911
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901911
2014-11-11
2016-10-01

Abstract

We investigate the control of magnetism with an electric field in FeGa(FeGa)/BaTiO(BTO) heterostructure films. The as-prepared FeGa/BTO samples present a uniaxial magnetic anisotropy, which is ascribed to be induced by the spontaneous ferroelectric polarization of the BTO substrates. With the electric field applied on the BTO substrates increasing from 0 to 6 kV/cm, the coercivity of FeGa films measured along the BTO[110] direction increases from 28 to 41 Oe, while the squareness of the hysteresis loop decreases from 0.99 to 0.31, which indicates that the easy and hard axes of FeGa films are swapped. The ferroelectric domains of BTO substrates and the magnetic domains of FeGa films exhibit the same dependence on the applied electric fields, manifesting the strong magnetoelectric coupling between the ferroelectricity of BTO substrates and the magnetism of FeGa films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901911.html;jsessionid=os2JJvpHY8ET_N7a5iHCWzN_.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901911&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901911&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901911'
Right1,Right2,Right3,