Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901912
1.
1.E. Fujii, R. Takayama, K. Nomura, A. Murata, T. Hirasawa, A. Tomozawa, S. Fujii, T. Kamada, and H. Torii, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2431 (2007).
http://dx.doi.org/10.1109/TUFFC.2007.556
2.
2.T. Kobayashi, R. Maeda, T. Itoh, and R. Sawada, Appl. Phys. Lett. 90, 183514 (2007).
http://dx.doi.org/10.1063/1.2736296
3.
3.A. Hajati, D. Latev, D. Gardner, A. Hajati, D. Imai, M. Torrey, and M. Schoeppler, Appl. Phys. Lett. 101, 253101 (2012).
http://dx.doi.org/10.1063/1.4772469
4.
4.T. Kobayashi, S. Oyama, N. Makimoto, H. Okada, T. Itoh, and R. Maeda, Sensors and Actuators A 198, 87 (2013).
http://dx.doi.org/10.1016/j.sna.2013.04.016
5.
5.H. Nogami, T. Kobayashi, H. Okada, N. Makimoto, R. Maeda, and T. Itoh, Smart Mater. Struct. 22, 095001 (2013).
http://dx.doi.org/10.1088/0964-1726/22/9/095001
6.
6.Y. Tomimatsu, H. Takahashi, T. Kobayashi, K. Matsumoto, I. Shimoyama, T. Itoh, and R. Maeda, J. Micromech. Microeng. 23, 125023 (2013).
http://dx.doi.org/10.1088/0960-1317/23/12/125023
7.
7.H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, J. Microelectromechanical Syst. 20, 1131 (2011).
http://dx.doi.org/10.1109/JMEMS.2011.2162488
8.
8.H. Liu, S. Zhang, R. Kathiresan, T. Kobayashi, and C. Lee, Appl. Phys. Lett. 100, 223905 (2012).
http://dx.doi.org/10.1063/1.4723846
9.
9.T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, Smart Mater. Struct. 19, 105030 (2010).
http://dx.doi.org/10.1088/0964-1726/19/10/105030
10.
10.H. Nogami, T. Koayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, Jpn. J. Appl. Phys. 51, 09LD11 (2012).
http://dx.doi.org/10.7567/JJAP.51.09LD11
11.
11.S. Hong and N. Setter, Appl. Phys. Lett. 81, 3437 (2002).
http://dx.doi.org/10.1063/1.1517396
12.
12.M. Kohli, P. Muralt, and N. Setter, Appl. Phys. Lett. 72, 3217 (1998).
http://dx.doi.org/10.1063/1.121554
13.
13.T. Ogawa and K. Nakamura, Jpn. J. Appl. Phys. 37, 5241 (1998).
http://dx.doi.org/10.1143/JJAP.37.5241
14.
14.T. Kobayashi, N. Makimoto, Y. Suzuki, H. Funakuobo, T. Oikawa, A. Wada, and R. Maeda, Jpn. J. Appl. Phys. 52, 09KA01 (2013).
http://dx.doi.org/10.7567/JJAP.52.09KA01
15.
15.N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sensors and Actuators A 105, 162 (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00090-6
16.
16.T. Kobayashi, M. Ichiki, J. Tsaur, and R. Maeda, Thin Solid Films 489, 74 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.05.004
17.
17.T. Kobayashi, M. Ichiki, T. Noguchi, and R. Maeda, Thin Solid Films 516, 5272 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.067
18.
18.T. Kobayashi, R. Maeda, and T. Itoh, J. Micromech. Microeng. 18, 115007 (2008).
http://dx.doi.org/10.1088/0960-1317/18/11/115007
19.
19.T. Kobayashi, R. Maeda, and T. Itoh, Smart Mater. Struct. 18, 065008 (2009).
http://dx.doi.org/10.1088/0964-1726/18/6/065008
20.
20.J. G. Smits and W. S. Choi, IEEE Trans. Ultrason. Ferroelectr. Control 38, 256 (1991).
http://dx.doi.org/10.1109/58.79611
21.
21.M. S. Weinberg, J. Microelectromech. Syst. 8, 52933 (1999).
http://dx.doi.org/10.1109/84.809069
22.
22.M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, J. Micromech. Microeng. 23, 025008 (2013).
http://dx.doi.org/10.1088/0960-1317/23/2/025008
23.
23.S. Hong, E. L. Colla, E. Kim, D. V. Taylor, A. K. Tagantsev, P. Muralt, K. No, and N. Setter, J. Appl. Phys. 86, 607613 (1999).
http://dx.doi.org/10.1063/1.370774
24.
24.R. Gao, J. Britson, J. R. Jokisaari, C. T. Nelson, S.-H. Baek, Y. Wang, C.-B. Eom, L.–Q. Chen, and X. Pan, Nature Communications 4, 2791 (2013).
http://dx.doi.org/10.1038/ncomms3791
25.
25.F. Xu, S. Trolier-McKinstrry, W. Ren, B. Xu, Z. –L. Xie, and K. J. Hemker, J. Appl. Phys. 89, 1336 (2001).
http://dx.doi.org/10.1063/1.1325005
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901912
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901912
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901912
2014-11-11
2016-09-25

Abstract

We have investigated the influence of pulse poling on the piezoelectric property of Pb(Zr,Ti)O (PZT) thin films. 1.9-μm-thick PZT thin films were deposited by sol-gel method and fabricated into microelectromechanical systems (MEMS) based piezoelectric microcantilevers. 1 kHz of unipolar or bipolar triangle pulse wave between 30-100 V was applied to the PZT thin films. The effective piezoelectric constant , under small signal actuation at 1-3 V, was estimated from the tip displacement of the piezoelectric microcantilevers. The highest piezoelectric constant | | as high as 105 pm/V has been obtained by downward unipolar pulse poling at 100 V.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901912.html;jsessionid=w5brzjZt_Q-4AKhH-r0f7UGI.x-aip-live-03?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901912&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901912&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901912'
Right1,Right2,Right3,