Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901914
1.
1.T. S. Chen, K. H. Wu, H. Chung, and C. H. Kao, IEEE Electron Device Lett. 25, 205 (2004).
http://dx.doi.org/10.1109/LED.2004.825163
2.
2.G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, IBM J. Res. Dev. 52, 449 (2008).
http://dx.doi.org/10.1147/rd.524.0449
3.
3.G. Zhang, X. P. Wang, W. J. Yoo, and M. F. Li, IEEE Trans. Electron Devices 54, 3317 (2007).
http://dx.doi.org/10.1109/TED.2007.908888
4.
4.C. Zhu, Z. Huo, Z. Xu, M. Zhang, Q. Wang, J. Liu, S. Long, and M. Liu, Appl. Phys. Lett. 97, 253503 (2010).
http://dx.doi.org/10.1063/1.3531559
5.
5.A. Arreghini, N. Akil, F. Driussi, D. Esseni, L. Selmi, and M. J. van Duuren, Solid-State Electron. 52, 1460 (2008).
http://dx.doi.org/10.1016/j.sse.2008.04.016
6.
6.Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, J. Appl. Phys. 84, 2358 (1998).
http://dx.doi.org/10.1063/1.368346
7.
7.B. H. Koh, E. W. H. Kan, W. K. Chim, W. K. Choi, D. A. Antoniadis, and E. A. Fitzgerald, J. Appl. Phys. 97, 124305 (2005).
http://dx.doi.org/10.1063/1.1931031
8.
8.M. She and T. J. King, IEEE Trans. Electron Devices. 50, 1934 (2003).
http://dx.doi.org/10.1109/TED.2003.816525
9.
9.Y. H. Lin, C. H. Chien, C. T. Lin, C. Y. Chang, and T. F. Lei, IEEE Electron Device Lett. 26, 154 (2005).
http://dx.doi.org/10.1109/LED.2004.842727
10.
10.Y. Zhou, J. Yin, H. Xu, Y. Xia, Z. Liu, A. Li, Y. Gong, L. Pu, F. Yan, and Y. Shi, Appl. Phys. Lett. 97, 143504 (2010).
http://dx.doi.org/10.1063/1.3496437
11.
11.H. C. You, T. H. Hsu, F. H. Ko, J. W. Huang, W. L. Yang, and T. F. Lei, IEEE. Electron Device Lett. 27, 653 (2006).
http://dx.doi.org/10.1109/LED.2006.882519
12.
12.S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang, and M. J. Tsai, Appl. Phys. Lett. 90, 262901 (2007).
http://dx.doi.org/10.1063/1.2751579
13.
13.T. M. Pan and T. W. Wu, IEEE Transactions on Electron Devices 55, 1379 (2008).
http://dx.doi.org/10.1109/TED.2008.920030
14.
14.Y. H. Lin, C. H. Chien, T. Y. Yang, and T. F. Lei, J. Electrochem. Soc. 154, H619 (2007).
http://dx.doi.org/10.1149/1.2737345
15.
15.W. Guan, S. Long, M. Liu, Z. Li, Y. Hu, and Q. Liu, J. Phys. D: Appl. Phys. 40, 2754 (2007).
http://dx.doi.org/10.1088/0022-3727/40/9/012
16.
16.Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, J. Appl. Phys. 84, 2358 (1998).
http://dx.doi.org/10.1063/1.368346
17.
17.B. H. Koh, E. W. H. Kan, W. K. Chim, W. K. Choi, D. A. Antoniadis, and E. A. Fitzgerald, J. Appl. Phys. 97, 124305 (2005).
http://dx.doi.org/10.1063/1.1931031
18.
18.M. She and T. J. King, IEEE Trans. Electron Devices. 50, 1934 (2003).
http://dx.doi.org/10.1109/TED.2003.816525
19.
19.Z. F. Hou, X. G. Gong, and Q. Li, J. Appl. Phys. 106, 014104 (2009).
http://dx.doi.org/10.1063/1.3109206
20.
20.S. Spiga, F. Driussi, A. Lamperti, G. Congedo, and O. Salicio, Appl. Phys. Express 5, 021102 (2012).
http://dx.doi.org/10.1143/APEX.5.021102
21.
21.Z. J. Tang, X. H. Zhu, H. N. Xu, Y. D. Xia, J. Yin, A. D. Li, F. Yan, and Z. G. Liu, Appl. Phys. A. 108, 217 (2012).
http://dx.doi.org/10.1007/s00339-012-6877-7
22.
22.C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, Tech. Dig. - Int. Electron Devices Meet. (2003) 26.5.1–26.5.4.
23.
23.G. Molas, L. Masoero, P. Blaise, A. Padovani, J. P. Colonna, E. Vianello, M. Bocquet, E. Nowak, M. Gasulla, O. Cueto et al., Tech. Dig. - Int. Electron Devices Meet. (2010) 22.5.1–22.5.4.
24.
24.X. Lan, X. Ou, Y. Cao, S. Tang, C. Gong, B. Xu, Y. Xia, J. Yin, A. Li, F. Yan, and Z. Liu, J. Appl. Phys. 114, 044104 (2013).
http://dx.doi.org/10.1063/1.4816463
25.
25.X. X. Lan, X. Ou, Y. Lei, C. J. Gong, Q. N. Yin, B. Xu, Y. D. Xia, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 103, 192905 (2013).
http://dx.doi.org/10.1063/1.4829066
26.
26.E. H. Hyeong, S. M. Bae, C. R. Park, H. Yang, and J. H. Hwang, Curr. Appl. Phys. 11, 1354 (2011).
http://dx.doi.org/10.1016/j.cap.2011.04.002
27.
27.K. Jiang, X. Ou, X. X. Lan, Z. Y. Cao, X. J. Liu, W. Lu, C. J. Gong, B. Xu, A. D. Li, Y. D. Xia, J. Yin, and Z. G. Liu, Appl. Phys. Lett. 104, 263506 (2014).
http://dx.doi.org/10.1063/1.4885717
28.
28.Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, IEEE Transactions on Electron Devices 51, 1143 (2004).
http://dx.doi.org/10.1109/TED.2004.829861
29.
29.H. Zhu, H. Yuan, H. Li, C. Richter, O. Kirillov, D. Ioannou, and Q. Li, Nanotechnology, IEEE Transactions on 12, 1151 (2013).
http://dx.doi.org/10.1109/TNANO.2013.2281817
30.
30.N. J. Ramer and A. M. Rappe, Phys. Rev. B 62, R743 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R743
31.
31.J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
http://dx.doi.org/10.1116/1.591472
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901914
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901914
2014-11-13
2016-12-04

Abstract

The memory structures Pt/AlO/(TiO)(AlO)/AlO/p-Si(nominal composition = 0.05, 0.50 and 0.70) were fabricated by using rf-magnetron sputtering and atomic layer deposition techniques, in which the dielectric constant and the bottom of the conduction band of the high-k composite (TiO)(AlO) were adjusted by controlling the partial composition of AlO. With the largest dielectric constant and the lowest deviation from the bottom of the conduction band of Si, (TiO)(AlO) memory devices show the largest memory window of 7.54 V, the fast programming/erasing speed and excellent endurance and retention characteristics, which were ascribed to the special structural design, proper combination of dielectric constant and band alignment in the high-k composite (TiO)(AlO).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901914.html;jsessionid=AC2dyYoPMyOCpO-O_RK1SPtC.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901914&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901914'
Right1,Right2,Right3,