Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901915
1.
1.S. P. Beeby, M. J. Tudor, and N. M. White, Measurement Science and Technology 17(12), R175 (2006).
http://dx.doi.org/10.1088/0957-0233/17/12/R01
2.
2.S. R. Anton and H. A. Sodano, Smart Materials and Structures 16(3), R1 (2007).
http://dx.doi.org/10.1088/0964-1726/16/3/R01
3.
3.S. Priya, Journal of Electroceramics 19(1), 167184 (2007).
http://dx.doi.org/10.1007/s10832-007-9043-4
4.
4.K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Materials and Structures 17(4), 043001 (2008).
http://dx.doi.org/10.1088/0964-1726/17/4/043001
5.
5.K. A. Cunefare, E. A. Skow, A. Erturk, J. Savor, N. Verma, and M. R. Cacan, Smart Materials and Structures 22(2), 025036 (2013).
http://dx.doi.org/10.1088/0964-1726/22/2/025036
6.
6.W. J. Choi, Y. Jeon, J. H. Jeong, R. Sood, and S. G. Kim, Journal of Electroceramics 17(2-4), 543548 (2006).
http://dx.doi.org/10.1007/s10832-006-6287-3
7.
7.W. Zhuo and Y. Xu, Applied Physics Letters 90(26), 263512-263512-263513 (2007).
8.
8.D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. W. III, and D.-J. Kim, Journal of Micromechanics and Microengineering 18(5), 055017 (2008).
http://dx.doi.org/10.1088/0960-1317/18/5/055017
9.
9.A. Erturk and D. J. Inman, Smart Materials and Structures 18(2), 025009 (2009).
http://dx.doi.org/10.1088/0964-1726/18/2/025009
10.
10.S. Banerjee, JP Journal of Solids and Structures 5(2), 75105 (2011).
11.
11.R. Ahmed and S. Banerjee, Journal of Engineering Mechanics (In press) (2014).
12.
12.Z. Chen, B. Guo, Y. Yang, and C. Cheng, Physica B: Condensed Matter 438(0), 18 (2014).
http://dx.doi.org/10.1016/j.physb.2013.12.040
13.
13.L.-Y. Wu, L.-W. Chen, and C.-M. Liu, Applied Physics Letters 95(1), - (2009).
14.
14.L.-Y. Wu, L.-W. Chen, and C.-M. Liu, Physics Letters A 373(12–13), 11891195 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.01.051
15.
15.L.-Y. Wu, L.-W. Chen, and C.-M. Liu, Physica B: Condensed Matter 404(12–13), 17661770 (2009).
http://dx.doi.org/10.1016/j.physb.2009.02.025
16.
16.H. Lv, X. Tian, M. Y. Wang, and D. Li, Applied Physics Letters 102(3), - (2013).
17.
17.M. Carrara, M. R. Cacan, M. J. Leamy, M. Ruzzene, and A. Erturk, Applied Physics Letters 100(20), - (2012).
http://dx.doi.org/10.1063/1.4719098
18.
18.S. Zhang and J. H. Wu, presented at the ASME 2013 International Mechanical Engineering Congress and Exposition, 2013 (unpublished).
19.
19.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289(5485), 17341736 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
20.
20.P. Sheng, X. X. Zhang, Z. Liu, and C. T. Chan, Physica B: Condensed Matter 338(1–4), 201205 (2003).
http://dx.doi.org/10.1016/S0921-4526(03)00487-3
21.
21.S. Gonella, A. C. To, and W. K. Liu, Journal of the Mechanics and Physics of Solids 57(3), 621633 (2009).
http://dx.doi.org/10.1016/j.jmps.2008.11.002
22.
22.K. T. Tan, H. H. Huang, and C. T. Sun, Applied Physics Letters 101(24), - (2012).
23.
23.Z. Liu, C. T. Chan, and P. Sheng, Physical Review B 71(1), 014103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014103
24.
24.H. H. Huang, C. T. Sun, and G. L. Huang, International Journal of Engineering Science 47(4), 610617 (2009).
http://dx.doi.org/10.1016/j.ijengsci.2008.12.007
25.
25.A. P. Liu, R. Zhu, X. N. Liu, G. K. Hu, and G. L. Huang, Wave Motion 49(3), 411426 (2012).
http://dx.doi.org/10.1016/j.wavemoti.2011.12.006
26.
26.G. W. Milton and J. R. Willis, Proceedings of the Royal Society A: Mathematical Physical and Engineering Science 463(2079), 855880 (2007).
http://dx.doi.org/10.1098/rspa.2006.1795
27.
27.S. Priya and D. J. Inman, Springer ISBN: 978-0-387-76463-4. (2009).
28.
28.A. Erturk and D. J. Inman, Smart Mater Struct. 18 (025009) (2009).
http://dx.doi.org/10.1088/0964-1726/18/2/025009
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901915
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901915
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901915
2014-11-12
2016-09-24

Abstract

This letter presents the possibility of energy scavenging (ES) utilizing the physics of acousto-elastic metamaterial (AEMM) at low frequencies (<∼3KHz). It is proposed to use the AEMM in a dual mode (Acoustic Filter and Energy Harvester), simultaneously. AEMM’s are typically reported for filtering acoustic waves by trapping or guiding the acoustic energy, whereas this letter shows that the dynamic energy trapped inside the soft constituent (matrix) of metamaterials can be significantly harvested by strategically embedding piezoelectric wafers in the matrix. With unit cell AEMM model, we experimentally asserted that at lower acoustic frequencies (< ∼3 KHz), maximum power in the micro Watts (∼35µW) range can be generated, whereas, recently reported phononic crystal based metamaterials harvested only nano Watt (∼30nW) power against 10KΩ resistive load. Efficient energy scavengers at low acoustic frequencies are almost absent due to large required size relevant to the acoustic wavelength. Here we report sub wave length scale energy scavengers utilizing the coupled physics of local, structural and matrix resonances. Upon validation of the argument through analytical, numerical and experimental studies, a multi-frequency energy scavenger (ES) with multi-cell model is designed with varying geometrical properties capable of scavenging energy (power output from ∼10µW – ∼90µW) between 0.2 KHz and 1.5 KHz acoustic frequencies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901915.html;jsessionid=xhqNdUxpVhbSYzuBnVMJNcDh.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901915&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901915'
Right1,Right2,Right3,