Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4901922
1.
1.P. Kempisty, S. Krukowski, P. Strak, and K. Sakowski, J. Appl. Phys. 106, 054901 (2009);
http://dx.doi.org/10.1063/1.3204965
1. P. Kempisty, S. Krukowski, P. Strak, and K. Sakowski, J. Appl. Phys. 111, 109905 (2012).
http://dx.doi.org/10.1063/1.4724337
2.
2.P. Kempisty, P. Strak, and S. Krukowski, Surf. Sci. 605, 695 (2011);
http://dx.doi.org/10.1016/j.susc.2011.01.005
2. P. Kempisty, P. Strak, and S. Krukowski, Surf. Sci. 606 (2012).
3.
3.P. Kempisty and S. Krukowski, J. Appl. Phys. 112, 113704-1-9 (2012).
http://dx.doi.org/10.1063/1.4768256
4.
4.P. Kempisty and S. Krukowski, J. Cryst. Growth 358, 64 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.08.004
5.
5.S. Krukowski, P. Kempisty, and P. Strak, J. Appl. Phys. 114, 143705-1-12 (2013).
http://dx.doi.org/10.1063/1.4824800
6.
6.P. Kempisty, P. Strak, K. Sakowski, and S. Krukowski, J. Appl. Phys. 114, 063507-1-10 (2013).
http://dx.doi.org/10.1063/1.4817903
7.
7.S. Krukowski, P. Kempisty, P. Strak, and K. Sakowski, J. Appl. Phys. 115, 043529-1-9 (2014).
http://dx.doi.org/10.1063/1.4863338
8.
8.P. Kempisty, P. Strak, K. Sakowski, and S. Krukowski, J. Cryst. Growth 390, 71 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.12.039
9.
9.K. Rapcewicz, M. B. Nardelli, and J. Bernholz, Phys. Rev. B 56, 12725 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R12725
10.
10.F.-H. Wang, P. Kruger, and J. Pollman, Phys. Rev. B 64, 35305 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035305
11.
11.A. L. Rosa and J. Neugebauer, Phys. Rev. B 73, 205346 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205346
12.
12.C. G. Van de Walle and J. Neugebauer, Phys. Rev. Lett. 88, 66103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066103
13.
13.C. G. Van de Walle and J. Neugebauer, J. Crystal Growth 248, 8 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)01868-7
14.
14.T. Ito, T. Akiyama, and K. Nakamura, Semicond. Sci. Technol. 27, 024010 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024010
15.
15.Y.-W. Chen and J.-L. Kuo, J. Phys. Chem. C 117, 8774 (2013).
http://dx.doi.org/10.1021/jp312377t
16.
16.J. Fritsch, O. F. Sankey, K. E. Smith, and J. B. Page, Phys. Rev. B 57, 15360 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.15360
17.
17.C. A. Pignedoli, R. Di Felice, and C. M. Bertoni, Phys. Rev. B 64, 113301 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.113301
18.
18.C. A. Pignedoli, R. Di Felice, and C. M. Bertoni, Surf. Sci. 547, 63 (2003).
http://dx.doi.org/10.1016/j.susc.2003.10.005
19.
19.V. M. Bermudez, Surface Science 565, 89 (2004).
http://dx.doi.org/10.1016/j.susc.2004.06.209
20.
20.V. M. Bermudez, Chem. Phys. Lett. 317, 290 (2000).
http://dx.doi.org/10.1016/S0009-2614(99)01404-9
21.
21.P. Kempisty and S. Krukowski, J. Cryst. Growth 310, 900 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.061
22.
22.A. J. McGinnis, D. Thomson, R. F. Davis, E. Chen, A. Michel, and H. H. Lamb, Surf. Sci. 494, 28 (2001).
http://dx.doi.org/10.1016/S0039-6028(01)01466-2
23.
23.M. D. Pashley, Phys. Rev. B 40, 10481 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.10481
24.
24.P. Ordejón, D. A. Drabold, M. P. Grumbach, and R. M. Martin, Phys. Rev. B 48, 14646 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14646
25.
25.J. M. Soler, E. Artacho, J. D. Gale, Alberto García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
26.
26.N. Troullier and J. L. Martins, Phys. Rev. B43, 1993 (1991);
http://dx.doi.org/10.1103/PhysRevB.43.1993
26. N. Troullier and J. L. Martins, Phys. Rev. B43, 8861 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.8861
27.
27.Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235116
28.
28.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
29.
29.M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon, and T. S. Cheng, Appl. Phys. Lett. 69, 73 (1996).
http://dx.doi.org/10.1063/1.118123
30.
30.H. J Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
31.
31.J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.16067
32.
32.S. Krukowski, P. Kempisty, and P. Strąk, J. Appl. Phys. 105, 113701 (2009).
http://dx.doi.org/10.1063/1.3130156
33.
33.G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
34.
34.G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
35.
35.D. Sheppard, R. Terrell, and G. Henkelman, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
36.
36.H.-J. Kim and J.-H. Lee, Sens. Actuators B 192, 607 (2014).
http://dx.doi.org/10.1016/j.snb.2013.11.005
37.
37.I.-D. Kim, A. Rothschild, and H. L. Tuller, Acta Mater. 61, 974 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.041
38.
38.D. K. Aswal and S. K. Gupta, Science and technology of chemiresistor gas sensors (Nova Science Publishers, New York, 2007).
39.
39.A. Kolmakov and M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004).
http://dx.doi.org/10.1146/annurev.matsci.34.040203.112141
40.
40.N. Ymazoe, Sens. Actuators B 108, 2 (2005).
http://dx.doi.org/10.1016/j.snb.2004.12.075
41.
41.T. Wolkenstein, Electronic Processes in Semiconductor Surfaces during Chemisorption (Consultants Bureau, New York, 1991), p. 125.
42.
42.A. Rothschild and Y. Komem, Sens. Actuators B 93, 363 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00212-0
43.
43.R. Kudrawiec, M. Gladysiewicz, L. Janicki, J. Misiewicz, G. Cywinski, C. Chèze, P. Wolny, P. Prystawko, and C. Skierbiszewski, Appl. Phys. Lett. 100, 181603 (2012).
http://dx.doi.org/10.1063/1.4707386
44.
44.G. Cywiński, R. Kudrawiec, Ł. Janicki, J. Misiewicz, C. Chèze, M. Siekacz, M. Sawicka, P. Wolny, M. Boćkowski, and C. Skierbiszewski, J. Vac. Technol. B 31, 03C112 (2013).
http://dx.doi.org/10.1116/1.4793765
45.
45.R. Kudrawiec, L. Janicki, M. Gladysiewicz, J. Misiewicz, G. Cywinski, M. Boćkowski, G. Muzioł, C. Chèze, M. Sawicka, and C. Skierbiszewski, Appl. Phys. Lett. 103, 052107 (2013).
http://dx.doi.org/10.1063/1.4817296
46.
46.J. Soltys, J. Piechota, M. Lopuszynski, and S. Krukowski, New J. Phys. 12, 043024-1-18 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/043024
47.
47.P. Kempisty, P. Strak, and S. Krukowski, phys. stat. sol (c) 9, 826 (2012).
http://dx.doi.org/10.1002/pssc.201100498
48.
48.M. Magnuson, M. Mattesini, C. Hoglund, J. Birch, and L. Hultman, Phys. Rev. B 81, 085125-1-8 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085125
49.
49.M. Ptasinska, J. Soltys, J. Piechota, and S. Krukowski, Vaccum 99, 166 (2014).
http://dx.doi.org/10.1016/j.vacuum.2013.05.006
50.
50.R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
http://dx.doi.org/10.1021/j100135a014
51.
51.M. Foussekis, A. A. Baski, and M. A. Reshchikov, Appl. Phys. Lett. 94, 162116 (2009).
http://dx.doi.org/10.1063/1.3122934
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4901922
Loading
/content/aip/journal/adva/4/11/10.1063/1.4901922
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4901922
2014-11-13
2016-09-28

Abstract

Adsorption of ammonia at NH/NH/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH/NH/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH and H-covered surface (region II), and at the conduction band minimum (CBM) for NH-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of the ECR in case of all mixed H-NH-NH coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH radical at the surface and escape of H molecule. The process energy is close to 0.12 eV, thus not large, but the direct inverse process is not possible due to the escape of the hydrogen molecule.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4901922.html;jsessionid=lwLnsMQca_SYsr_5fnUlVco8.x-aip-live-06?itemId=/content/aip/journal/adva/4/11/10.1063/1.4901922&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4901922&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4901922'
Right1,Right2,Right3,