Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Wong, Nano-CMOS Gate Dielectric Engineering (CRC Press, Boca Raton, 2012), p. 113.
2.H. Iwai, ECS Trans. 50(5), 13 (2013).
3.H. Wong and H. Iwai, Microelectron. Eng. 83, 1867 (2006).
4.K. Kakushima, K. Tachi, P. Ahmet, K. Tsutsui, N. Sygii, and T. Hattori, Microelectron. Reliab. 50, 790 (2010).
5.B. L. Yang, H. Wong, K. Kakushima, and H. Iwai, Mictroelectron. Reliab 52, 1613 (2012).
6.H. Wong, B. L. Yang, K. Kakushima, P. Ahmet, and H. Iwai, Vacuum 86, 990 (2013).
7.H. Wong, B. L. Yang, S. Dong, H. Iwai, K. Kakushima, and P. Ahmet, Appl. Phys. Lett. 101, 233507 (2012).
8.H. Wong, H. Iwai, K. Kakushima, B. L. Yang, and P. K. Chu, J. Electrochem. Soc. 157, G49 (2010).
9.H. Wong, B. L. Yang, K. Kakushima, P. Ahmet, and H. Iwai, Vacuum 86, 929 (2012).
10.S. Inamoto, J. Yamasaki, E. Okunishi, K. Kakushima, H. Iwai, and N. Tanaka, J. Appl. Phys. 107, 124510 (2010).
11.J. Fan, X. Wu, L. Yang, and D. Weng, Catalysis Today 126, 303 (2007).
12.Z. Zhang, H. Zhou, D. Guo, D. Wu, and Y. Tong, J. Alloys Comp. 476, 318 (2009).
13.J. P. Holgado, G. Munuera, J. P. Espinos, and A. R. Gonzalez-Elipe, Appl. Surf. Sci. 158, 164 (2000).
14.J. P. Holgado, R. Alvarez, and G. Munuera, Appl. Surf. Sci. 161, 301 (2000).
15.L. A. J. Garvie and P. R. Buseck, J. Phys. Chem. Solid 60, 1943 (1999).
16.M. H. Zoellner, P. Zaumseil, H. Wilkens et al., J. Cryst. Growth 355, 159 (2012).
17.H. Nohira, A. Komatsu, K. Yamashita, K. Kakushima, H. Iwai, Y. Hoshi, and Y. Shiraki, ECS Trans. 41(7), 137 (2011).
18.X. Luo, R. Wang, J. Ni, J. Lin, B. Lin, X. Xu, and K. Wei, Catal. Lett. 133, 382 (2009).
19.A. Q. Wang, P. Punchaipetch, R. M. Wallace, and T. D. Golden, J. Vac. Sci. Technol. B 21, 1169 (2003).

Data & Media loading...


Article metrics loading...



This work presents a detailed study on the chemical composition and bond structures of CeO/LaO stacked gate dielectrics based on x-ray photoelectron spectroscopy (XPS) measurements at different depths. The chemical bonding structures in the interfacial layers were revealed by Gaussian decompositions of Ce 3d, La 3d, Si 2s, and O 1s photoemission spectra at different depths. We found that La atoms can diffuse into the CeO layer and a cerium-lanthanum complex oxide was formed in between the CeO and LaO films. Ce3+ and Ce4+ states always coexist in the as-deposited CeO film. Quantitative analyses were also conducted. The amount of CeO phase decreases by about 8% as approaching the CeO/LaO interface. In addition, as compared with the single layer LaO sample, the CeO/LaO stack exhibits a larger extent of silicon oxidation at the LaO/Si interface. For the CeO/LaO gate stack, the out-diffused lanthanum atoms can promote the reduction of CeO which produce more atomic oxygen. This result confirms the significant improvement of electrical properties of CeO/LaO gated devices as the excess oxygen would help to reduce the oxygen vacancies in the film and would suppress the formation of interfacial La-silicide also.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd