Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Waltereit, W. Bronner, R. Quay, M. Dammann, R. Kiefer, S. Müller, M. Musser, J. Kühn, F. van Raay, M. Seelmann, M. Mikulla, O. Ambacher, F. van Rijs, T. Rödle, and K. Riepe, Phys. Status Solidi A 206, 1215 (2009).
2.R. W. Chuang, C. L. Yu, S. J. Chang, P. C. Chang, J. C. Lin, and T. M. Kuan, J. Cryst. Growth 308, 252 (2007).
3.R. Li, S. J. Cai, L. Wong, Y. Chen, K. L. Wang, R. P. Smith, S. C. Martin, K. S. Boutros, and J. M. Redwing, IEEE Electron Device Lett. 20, 323 (1999).
4.M. Akita, S. Kishimoto, and T. Mizutani, IEEE Electron Device Lett. 22, 376 (2001).
5.E. M. Chumbes, J. A. Smart, T. Prunty, and J. M. Shealy, IEEE Trans. Electron Devices 48, 416 (2001).
6.S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, IEEE Electron Device Lett. 20, 161 (1999).
7.W. Nagy, S. Singhal, R. Borges, J. W. Johnson, J. D. Brown, R. Ther-rien, A. Chaudhari, A. W. Hanson, J. Riddle, S. Booth, P. Rajagopal, E. L. Piner, and K. J. Linthicum, IEEE MTT-S Int. Microw. Symp. Dig. 483 (2005).
8.L. Liu and J. H. Edgar, Mater. Sci. Eng. R: Rep. 37, 61 (2002).
9.T. Pinnington, D. D. Koleske, J. M. Zahler, C. Ladous, Y.-B. Park, M. H. Crawford, M. Banas, G. Thaler, M. J. Russell, S. M. Olson, and H. A. Atwater, J. Cryst. Growth 310, 2514 (2008).
10.C. Wetzel, T. Suski, J. W. Ager III, E. R. Weber, E. E. Haller, S. Fischer, B. K. Meyer, R. J. Molnar, and P. Perlin, Phys. Rev. Lett. 78, 3923 (1997).
11.D. C. Look and R. J. Molnar, Appl. Phys. Lett. 70, 3377 (1997).
12.M. Rudziński, V. Desmaris, P. A. van Hal, J. L. Weyher, P. R. Hageman, K. Dynefors, T. C. Rödle, H. F. F. Jos, H. Zirath, and P. K. Larsen, phys. stat. sol. (c) 3, 2231 (2006).
13.S. M. Hubbard, G. Zhao, D. Pavlidis, W. Sutton, and E. Cho, J. Cryst. Growth 284, 297 (2005).
14.S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 81, 439 (2002).
15.S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, and S. Yoshida, J. Cryst. Growth 298, 831 (2007).
16.S. Kabi, D. Biswas, and S. Panda, International Conference on Computers and Devices for Communication 2009.
17.H. Yu, E. Ulker, and E. Ozbay, J. Cryst. Growth 289, 419 (2006).
18.P. Cantu, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 82, 3683 (2003).
19.Y. Cordier, M. Azize, N. Baron, S. Chenot, O. Tottereau, and J. Massies, J. Cryst. Growth 309, 1 (2007).
20.A. Y. Cho, Am. Inst. Physics, New York (1994).
21.D. F. Storm, D. S. Katzer, J. A. Mittereder, S. C. Binari, B. V. Shanabrook, X. Xu, D. S. McVey, R. P. Vaudo, and G. R. Brandes, J. Cryst. Growth 281, 32 (2005).
22.U. P. Gomes, Y. Chen, S. Kabi, P. Chow, and D. Biswas, Current Applied Physics 13, 487492 (2013).
23.T. Das, S. Kabi, and D. Biswas, J. Appl. Phys. 105, 046101 (2009).
24.O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999).
25.S. K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A. Bag, R. Kumar, and D. Biswas, J. Appl. Phys. 115, 174507 (2014).
26.D. Huantao, G. Wenping, Z. Jincheng, H. Yue, C. Chi, N. Jinyu, and X. Shengrui, J. semiconductor 30, 7 (2009).
27.Bede Scientific, Inc., USA.
28.B.-T. Liou, S.-H. Yen, and Y.-K. Kuob, Proceedings of SPIE 5628 (SPIE, Bellingham, WA, 2005).
29.K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys. 46, 3432 (1975).
30.G. Steude, B. K. Meyer, A. Goldner, A. Hoffmann, A. Kaschner, F. Bechstedt, H. Amano, and I. Akasaki, Jnp. J. Appl. Phys. 38, 498 (1999).
31.I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
32.C. Lian, H. Xing, C. S. Wang, L. McCarthy, and D. Browan, IEEE Electron Device Lett. 28, 8 (2007).
33.S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).
34.S. C. Jain and D. J. Roulston, Solid State Electron. 34, 453 (1991).
35.S. C. Jain, J. M. Mcgregor, D. J. Roulston, and P. Balk, Solid State Electron. 35, 639 (1992).
36.H. P. D. Lanyon and R. A. Tuft, IEEE Trans. Electron Devices. 26, 1014 (1979).
37.X. Zhang, S. J. Chua, W. Liu, and K. B. Chong, Appl. Phys Lett. 72, 1890 (1998).
38.H. Lee, J. J. Lee, P. Kung, F. J. Sanchez, and M. Razeghi, Appl. Phys Lett 74, 102 (1999).
39.O. Lancry, J.-L. Farvacque, E. Pichonat, and C. Gaquière, J. Phys. D: Appl. Phys. 44, 75105 (2011).

Data & Media loading...


Article metrics loading...



In this work, cluster tool (CT) Plasma Assisted Molecular Beam Epitaxy (PA-MBE) grown AlGaN/GaN heterostructure on c-plane (0 0 0 1) sapphire (AlO) were investigated by High Resolution X-ray Diffraction (HRXRD), Room Temperature Raman Spectroscopy (RTRS), and Room Temperature Photoluminescence (RTPL). The effects of strain and doping on GaN and AlGaN layers were investigated thoroughly. The out-of-plane (‘c’) and in-plane (‘a’) lattice parameters were measured from RTRS analysis and as well as reciprocal space mapping (RSM) from HRXRD scan of (002) and (105) plane. The in-plane (out-of plane) strain of the samples were found to be −2.5 × 10−3(1 × 10−3), and −1.7 × 10−3(2 × 10−3) in GaN layer and 5.1 × 10−3 (−3.3 × 10−3), and 8.8 × 10−3(−1.3 × 10−3) in AlGaN layer, respectively. In addition, the band structures of AlGaN/GaN interface were estimated by both theoretical (based on elastic theory) and experimental observations of the RTPL spectrum.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd