Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 179 (2005).
3.R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
4.K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).
5.J. Hrong, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Phys. Rev. B 83, 165113 (2011).
6.J. M. Dawlaty, S. Shivaraman, J. Strait, P. George, M. Chandrashekhar, F. Rana, M. G. Spencer, D. Veksler, and Y. Chen, Appl. Phys. Lett. 93, 131905 (2008).
7.I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, Nano Lett. 12, 551 (2012).
8.L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, Nano Lett. 12, 3711 (2012).
9.H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, Appl. Phys. Lett. 94, 172102 (2009).
10.K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Z. Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Nature Phys. 9, 248 (2013).
11.G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz, Nano Lett. 13, 524 (2013).
12.S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, Phys. Rev. Lett. 107, 237401 (2011).
13.C. J. Docherty and M. B. Johnston, J. Infrared Milli Terahz Waves 33, 797 (2012).
14.L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Nature Mater. 11, 865 (2012).
15.P. Tassin, T. Koschny, and C. M. Soukoulis, Science 341, 620 (2013).
16.S. Tani, F. Blanchard, and K. Tanaka, Phys. Rev. Lett. 109, 166603 (2012).
17.K. L. Ishikawa, Phys. Rev. B 82, 201402 (R) (2010).
18.S. A. Mikhailov and K. Ziegler, J. Phys.: Condense. Matter 20, 38204 (2008).
19.P. Bowlan, E. Martinez-Moreneo, K. Reimann, T. Elsaesser, and M. Woerner, Phys. Rev. B 89, 041408 (R) (2014).
20.F. Rana, IEEE Transactions on Nanotechnology 7, 91 (2008).
21.H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, J. Infrared Milli Terahz Waves 32, 655 (2011).
22.S. Shareef, Y. S. Ang, and C. Zhang, J. Opt. Soc. Am. B 29, 274 (2012).
23.Y. S. Ang and C. Zhang, Appl. Phys. Lett 98, 042107 (2011).
24.H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson, J. Phys. Chem. B 117, 15819 (2013).
25.M. J. Paul, Y. C. Chang, Z. J. Thompson, A. Stickel, J. Wardini, H. Choi, E. D. Minot, B. Hou, J. A. Nees, T. B. Norris, and Y.-S. Lee, New J. Phys. 15, 085019 (2013).
26.M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).
27.F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, Materials Today 15, 564 (2012).
28.Jonas D. Buron, Dirch H. Petersen, Peter Bøggild, David G. Cooke, Michael Hilke, Jie Sun, Eric Whiteway, Peter F. Nielsen, Ole Hansen, August Yurgens, and Peter U. Jepsen, Nano. Lett. 12, 5074 (2012).
29.C. Aversa and J. E. Sipe, Phys. Rev. B 52, 14636 (1995).
30.I. Al-Naib, J. E. Sipe, and M. M. Dignam, arXiv:1407.1273 (2014).
31.H. Hibino, H. Kageshima, and M. Nagase, J. Phys. D: Appl. Phys 43, 374005 (2010).
32.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
33.D. Su Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, Nano Lett. 8, 4320 (2008).
34.J. Hebling, Optical and Quantum Electronics 28, 1759 (1996).
35.F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugan, M. Reid, and F. Hegmann, IEEE Journal of Selected Topics in Quantum Electronics 17, 5 (2011).
36.D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and Tapash Chakraborty, Advances in Physics 59, 261 (2010).
37.S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nature Mater. 6, 770 (2007).
38.T. Winzer, A. Knorr, M. Mittendorff, S. Winnerl, M.-B. Lien, D. Sun, T. B. Norris, M. Helm, and E. Malic, Appl. Phys. Lett. 101, 221115 (2012).

Data & Media loading...


Article metrics loading...



We report nonlinear terahertz (THz) effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd