Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. I. Hochbaum, R. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451, 163 (2008).
2.M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
3.G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).
4.A. Purkayastha, A. S. Jain, C. Hapenciuc, R. Buckley, B. Singh, and C. Karthik, Chem. Mater. 23, 3029 (2011).
5.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B. 47, 12727 (1993).
6.A. Soni, Z. Yanyuan, Y. Ligen, M. K. Aik, M. S. Dresselhaus, and Q. H. Xiong, Nano Lett. 12, 1203 (2012).
7.J. Maassen and M. Lundstrom, Appl. Phys. Lett. 102, 093103-1 (2013).
8.Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. Z. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phy. 6, 584 (2010).
9.M. T. Pettes, J. Maassen, I. S. Jo, M. S. Lundstrom, and L. Shi, Nano Lett. 13, 5316 (2013).
10.P. Y. Ghaemi, R. S. Mong, and J. E. Moore, Phys. Rev. Lett. 105, 166603-1 (2010).
11.Y. L. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater. 22, 4002 (2010).
12.Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phy. Rev. B. 79, 195208-1 (2009).
13.O. V. Yazyev, J. E. Moore, and S. G. Louie, Phy. Rev. Lett. 105, 266806-1 (2010).
14.W. S. Liu, K. C. Lukas, K. McEnaney, S. Y. Lee, Q. Zhang, C. P. Opeil, G. Chen, and Z. F. Ren, Energy Environ. Sci. 6, 552 (2013).
15.M. X. Wang, C. H. Liu, J. P. Xu, F. Yang, L. Miao, M. Y. Yao, C. L. Gao, C. Y. Shen, X. C. Ma, X. Chen, Z. A. Xu, Y. Liu, S. Z. Zhang, D. Qian, J. F. Jia, and Q. K. Xue, Science 336, 52 (2012).
16.M. K. Jana, K. K. Biswas, and C. N. R. Rao, Chem. Eur. J. 19, 9110 (2013).
17.C. Anglin, N. Takas, J. Callejas, and P. F. Poudeu, J. Sol. Stat. Chem. 183, 1529 (2010).
18.I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802-1 (2010).
19.Z. Ali, C. B. Cao, J. L. Li, Y. L. Wang, T. Cao, M. Tanveer, M. Tahir, F. Idrees, and F. K. Butt, J. Power Sources. 229, 216 (2013).
20.H. C. Huang, JOM 64, 1253 (2012).
21.Z. L. Sun, S. C. Liufu, X. H. Chen, and L. D. Chen, Cryst. Eng. Comm. 12, 2672 (2010).
22.Y. Min, H. J. W. Roh, H. S. Yang, M. W. Park, S. T. Kim, S. W. Hwang, S. M. Lee, K. H. Lee, and U. Y. Jeong, Adv. Mater. 25, 1425 (2012).
23.K. Kadel, L. Kumari, W. Z. Li, J. Y. Huang, and P. P. Provencio, Nanoscale Res. Lett. 6, 571 (2011).
24.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
25.D. M. Rowe, in Thermoelectrics Hand Book: Macro to Nano, edited by D. M. Rowe (CRC/Taylor & Francis, Boca Raton FL, 2006).
26.H. S. Kim and S. J. Hong, J. Alloy. Comp. 586, S428S431 (2014).
27.See supplementary material at for [controlling parameters, XRD and EDS analysis, XPS spectra and Raman spectroscopy results].[Supplementary Material]

Data & Media loading...


Article metrics loading...



We firstly present a simple thermochemical method to fabricate high-quality BiSe nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm-1 and maximum broadening of about 10 cm-1 by in-plane vibrational mode E2 . The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd