Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.N. Bajwa, K. Dharamvir, V. K. Jindal, A. Ingale, D. K. Avasthi, R. Kumar, and A. Tripathi, Journal of Applied Physics 94, 326 (2003).
2.J. Chen, M. Asano, Y. Maekawa, and M. Yoshida, Journal of Membrane Science 277, 249 (2006).
3.A. M. P. Hussain, A. Kumar, F. Singh, and D. K. Avasthi, Journal of Physics D: Applied Physics 39, 750 (2006).
4.A. Kumar, D. K. Avasthi, A. Tripathi, D. Kabiraj, F. Singh, and J. C. Pivin, Journal of Applied Physics 101, 014308 (2007).
5.J. A. Van Kan, A. A. Bettiol, and F. Watt, Applied Physics Letters 83, 1629 (2003).
6.K. Ansari, J. A. Van Kan, A. A. Bettiol, and F. Watt, Applied Physics Letters 85, 476 (2004).
7.J. A. Van Kan, A. A. Bettiol, and F. Watt, Nano Letters 6, 579 (2006).
8.S. Seki, K. Maeda, S. Tagawa, H. Kudoh, M. Sugimoto, Y. Morita, and H. Shibata, Advanced Materials 13, 1663 (2001).<1663::AID-ADMA1663>3.0.CO;2-8
9.S. Seki, S. Tsukuda, K. Maeda, Y. Matsui, A. Saeki, and S. Tagawa, Physical Review B - Condensed Matter and Materials Physics 70, 144203 (2004).
10.Y. Maeyoshi, A. Saeki, S. Suwa, M. Omichi, H. Marui, A. Asano, S. Tsukuda, M. Sugimoto, A. Kishimura, K. Kataoka, and S. Seki, Scientific Reports 2 (2012).
11.M. Omichi, H. Marui, K. Takano, S. Tsukuda, M. Sugimoto, S. Kuwabata, and S. Seki, ACS Applied Materials and Interfaces 4, 5492 (2012).
12.M. Omichi, A. Asano, S. Tsukuda, K. Takano, M. Sugimoto, A. Saeki, D. Sakamaki, A. Onoda, T. Hayashi, and S. Seki, Nature Communications 5 (2014).
13.J. A. LaVerne, Radiation Research 153, 487 (2000).[0487:TEOHII]2.0.CO;2
14.J. A. LaVerne, in Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical, and Biological Consequences with Applications, edited by A. Mozumder and Y. Hatano (CRC press, New York, 2004), p. 403.
15.J. A. LaVerne and A. Baidak, Radiation Physics and Chemistry 81, 1287 (2012).
16.R. R. Wilson, Radiology 47, 487 (1946).
17.A. Wambersie, in Charged Particle and Photon Interactions with Matter. Chemical, Physicochemical, and Biological Consequences with Applications, edited by A. Mozumder and Y. Hatano (CRC press, New York, 2004), p. 743.
18.Y. Hirono, H. H. Smith, J. T. Lyman, K. H. Thompson, and J. W. Baum, Radiation Research 44, 204 (1970).
19.M. Mei, H. Deng, Y. Lu, C. Zhuang, Z. Liu, Q. Qiu, Y. Qiu, and T. C. Yang, Advances in Space Research 14, 363 (1994).
20.A. Chatterjee and H. J. Schaefer, Radiation and Environmental Biophysics 13, 215 (1976).
21.D. A. Young, Nature 182, 375 (1958).
22.P. B. Price and R. M. Walker, Nature 196, 732 (1962).
23.R. L. Fleischer, P. B. Price, and R. M. Walker, Science 149, 383 (1965).
24.R. L. Fleischer, P. B. Price, R. M. Walker, R. C. Filz, K. Fukui, M. W. Friedlander, E. Holeman, R. S. Rajan, and A. S. Tamhane, Science 155, 187 (1967).
25.R. L. Fleischer, P. B. Price, R. M. Walker, and E. L. Hubbard, Physical Review 156, 353 (1967).
26.B. G. Cartwright, E. K. Shirk, and P. B. Price, Nuclear Instruments and Methods 153, 457 (1978).
27.M. Yamamoto, N. Yasuda, Y. Kaizuka, M. Yamagishi, T. Kanai, N. Ishigure, A. Furukawa, M. Kurano, N. Miyahara, M. Nakazawa, T. Doke, and K. Ogura, Radiation Measurements 28, 227 (1997).
28.C. E. Johnson, E. R. Benton, N. Yasuda, and E. V. Benton, Radiation Measurements 44, 742 (2009).
29.M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, and A. Weidinger, Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 216, 1 (2004).
30.F. Aumayr, S. Facsko, A. S. El-Said, C. Trautmann, and M. Schleberger, Journal of Physics Condensed Matter 23 (2011).
31.G. Adler, D. Ballantine, and B. Baysal, Journal of Polymer Science 48, 195 (1960).
32.See Supplementary Material at for AFM image of PAA nanowires.[Supplementary Material]
33.D. J. T. Hill, J. H. O’Donnell, C. L. Winzor, and D. J. Winzor, Polymer 31, 538 (1990).
34.J. P. Lawler and A. Charlesby, European Polymer Journal 11, 755 (1975).
35.E. Jabbari and S. Nozari, Iranian Polymer Journal 8, 263 (1999).
36.M. J. Rosenberg, F. H. Séguin, C. J. Waugh, H. G. Rinderknecht, D. Orozco, J. A. Frenje, M. G. Johnson, H. Sio, A. B. Zylstra, N. Sinenian, C. K. Li, R. D. Petrasso, V. Y. Glebov, C. Stoeckl, M. Hohenberger, T. C. Sangster, S. Lepape, A. J. Mackinnon, R. M. Bionta, O. L. Landen, R. A. Zacharias, Y. Kim, H. W. Herrmann, and J. D. Kilkenny, Review of Scientific Instruments 85 (2014).

Data & Media loading...


Article metrics loading...



Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-, ’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd