Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4902177
1.
1.D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Z. I. Alferov, P. S. Kopev, and V. M. Ustinov, IEEE J. Sel. Top. Quantum Electron. 3, 196 (1997).
http://dx.doi.org/10.1109/2944.605656
2.
2.A. J. Shields, Nature Photonics 1, 215223 (2007).
http://dx.doi.org/10.1038/nphoton.2007.46
3.
3.M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, and Y. Nakata, J. of Phys. D 38, 2126 (2005).
http://dx.doi.org/10.1088/0022-3727/38/13/008
4.
4.O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84(11), 25132516 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2513
5.
5.F. Hatami et al., Appl. Phys. Lett. 67, 656 (1995).
http://dx.doi.org/10.1063/1.115193
6.
6.A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, and N. Öncan, Appl. Phys. Lett. 91, 242109 (2007).
http://dx.doi.org/10.1063/1.2824884
7.
7.R. B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L. F. Lester, and D. L. Huffaker, Appl. Phys. Lett. 90, 173125 (2007).
http://dx.doi.org/10.1063/1.2734492
8.
8.R. Timm, H. Eisele, A. Lenz, L. Ivanova, G. Balakrishnan, D. L. Huffaker, and M. Dähne, Phys. Rev. Lett. 101, 256101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256101
9.
9.R. Timm, H. Eisele, A. Lenz, L. Ivanova, V. Vossebürger, T. Warming, D. Bimberg, I. Farrer, D. A. Ritchie, and M. Dähne, Nano. Lett. 10(10), 39723977 (2010).
http://dx.doi.org/10.1021/nl101831n
10.
10.P. Carrington, R. J. Young, P. Hodgson, A. M. Sanchez, M. Hayne, and A. Krier, Cryst. Growth Des. 13, 1226 (2013).
http://dx.doi.org/10.1021/cg301674k
11.
11.K. Suzuki, R. A. Hogg, and Y. Arakawa, J. Appl. Phys. 85, 8349 (1999).
http://dx.doi.org/10.1063/1.370622
12.
12.I. Farrer, M. J. Murphy, D. A. Ritchie, and A. J. Shields, J. Crystal Growth 251, 771776 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02398-9
13.
13.R. J. Young, E. P. Smakman, A. M. Sanchez, P. D. Hodgson, P. M. Koenraad, and M. Hayne, App. Phys. Lett. 100, 082104 (2012).
http://dx.doi.org/10.1063/1.3688037
14.
14.E. P. Smakman, J. K. Garleff, R. J. Young, M. Hayne, P. Rambabu, and P. M. Koenraad, Appl. Phys. Lett. 100, 142116 (2012).
http://dx.doi.org/10.1063/1.3701614
15.
15.A. J. Martin et al., Appl. Phys. Lett. 102, 113103 (2013).
http://dx.doi.org/10.1063/1.4796036
16.
16.M. Yoshita, T. Sasaki, M. Baba, and H. Akiyama, Appl. Phys. Lett. 73, 635 (1998).
http://dx.doi.org/10.1063/1.121931
17.
17.W.-H. Lin, M.-Y. Lin, S.-Y. Wu, and S.-Y. Lin, IEEE Photon. Tech. Lett. 24, 1203 (2012).
http://dx.doi.org/10.1109/LPT.2012.2200247
18.
18.L. Müller-Kirsch, R. Heitz, A. Schliwa, O. Stier, D. Bimberg, H. Kirmse, and W. Neumann, Appl. Phys. Lett. 78, 1418 (2001).
http://dx.doi.org/10.1063/1.1353818
19.
19.C.-K. Sun, G. Wang, J. E. Bowers, B. Brar, H.-R. Blank, H. Kroemer, and M. H. Pilkuhn, Appl. Phys. Lett. 68, 1543 (1996).
http://dx.doi.org/10.1063/1.115693
20.
20.M. Jo, M. Sato, S. Miyamura, H. Sasakura, H. Kumano, and I. Suemune, Nanoscale Research Letters 7, 354 (2012).
http://dx.doi.org/10.1186/1556-276X-7-354
21.
21.P. D. Hodgson, R. J. Young, M. Ahmad Kamarudin, P. J. Carrington, A Krier, Q. D. Zhuang, E. P. Smakman, P. M. Koenraad, and M. Hayne, J. Appl. Phys. 114, 073519 (2013).
http://dx.doi.org/10.1063/1.4818834
22.
22.K. Matsuda, S. V. Nair, H. E. Ruda, Y. Sugimoto, T. Saiki, and K. Yamaguchi, Appl. Phys. Lett. 90, 013101 (2007).
http://dx.doi.org/10.1063/1.2425039
23.
23.M. P. F. de Godoy et al., Phys. Rev. B 73, 033309 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.033309
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4902177
Loading
/content/aip/journal/adva/4/11/10.1063/1.4902177
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4902177
2014-11-17
2016-09-30

Abstract

We present optical studies of individual and few GaSb quantum rings embedded in a GaAs matrix. Contrary to expectation for type-II confinement, we measure rich spectra containing sharp lines. These lines originate from excitonic recombination and are observed to have resolution-limited full-width at half maximum of 200 μeV. The detail provided by these measurements allows the characteristic type-II blueshift, observed with increasing excitation power, to be studied at the level of individual nanostructures. These findings are in agreement with hole-charging being the origin of the observed blueshift.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4902177.html;jsessionid=Tx1qfVdQetRWTmnFxtFFA4DH.x-aip-live-02?itemId=/content/aip/journal/adva/4/11/10.1063/1.4902177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4902177&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4902177'
Right1,Right2,Right3,