Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4902178
1.
1.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
2.
2.L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
3.
3.M. D. Stiles and J. Miltat, Spin dynamics in confined magnetic structures iii (Springer, 2006), p. 225.
4.
4.M. Covington, Science 307, 215 (2005).
http://dx.doi.org/10.1126/science.1107610
5.
5.W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, Phys. Rev. Lett. 92, 027201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.027201
6.
6.J. A. Katine and E. Fullerton, J. Magn. Magn. Mater. 320, 1217 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.013
7.
7.A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanable, and S. Yuasa, Nature 438, 339 (2005).
http://dx.doi.org/10.1038/nature04207
8.
8.S. Kaka, M. Pufall, W. Rippard, T. J. Silva, S. Russek, and J. A. Katine, Nature 437, 389 (2005).
http://dx.doi.org/10.1038/nature04035
9.
9.A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys. Rev. Lett. 101, 066601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.066601
10.
10.A. Bisig, L. Heyne, O. Boulle, and M. Kläui, Appl. Phys. Lett. 95, 162504 (2009).
http://dx.doi.org/10.1063/1.3238314
11.
11.U. Ebels, B. R. B. Delaët, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J. P. Michel, L. P. Buda, M. C. Cyrille, O. Redon, and B. Dieny, Nat. Mater. 6, 447 (2007).
http://dx.doi.org/10.1038/nmat1905
12.
12.B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, Nat. Commun. 1, 8 (2010).
http://dx.doi.org/10.1038/ncomms1006
13.
13.A. Dussaux, E. Grimaldi, B. R. Salles, A. S. Jenkins, A. V. Khvalkovskiy, P. Bortolotti, J. Grollier, H. Kubota, A. Fukushima, K. Yakushiji, S. Yuasa, V. Cros, and A. Fert, Phys. Rev. Lett. 105, 022404 (2014).
14.
14.A. Vogel, A. Drews, M. Weigand, and G. Meier, AIP Adv. 2, 042180 (2012).
http://dx.doi.org/10.1063/1.4771683
15.
15.S. Erokhin and D. Berkov, Phys. Rev. B 89, 144421 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.144421
16.
16.J. Grollier, V. Cros, and A. Fert, Phys. Rev. B 73, 060409(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.73.060409
17.
17.A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. A. Araujo, J. Grollier, and K. A. Zvezdin, Phys. Rev. B 85, 100409(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.100409
18.
18.J. V. Kim, Q. Mistral, and C. Chappert, Phys. Rev. Lett. 100, 167201 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.167201
19.
19.A. V. Khvalkovskiy, J. Grollier, A. Dussaux, K. A. Zvezdin, and V. Cros, Phys. Rev. B 80, 140401(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.80.140401
20.
20.M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 (National Institute of Standards and Technology, Gaithersburg, MD, 1999).
21.
21.X. Chen and R. H. Victora, Phys. Rev. B 79, 180402(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.180402
22.
22.A. N. Slavin and V. S. Tiberkevich, Phys. Rev. B 74, 104401(R) (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104401
23.
23.A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.230
24.
24.O. V. Sukhostavets, J. Gonzalez, and K. Y. Guslienko, Appl. Phys. Express 4, 065003 (2011).
http://dx.doi.org/10.1143/APEX.4.065003
25.
25.J. P. Sinnecker, H. V. Cotrina, F. Garcia, E. R. P. Novais, and A. P. Guimarães, J. Appl. Phys. 115, 203902 (2014).
http://dx.doi.org/10.1063/1.4878875
26.
26.K. Y. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Phys. Rev. B 65, 024414 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.024414
27.
27.Y. W. Liu, Z. W. Hou, S. Gliga, and R. Hertel, Phys. Rev. B 79, 104435 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104435
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4902178
Loading
/content/aip/journal/adva/4/11/10.1063/1.4902178
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4902178
2014-11-17
2016-09-26

Abstract

Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4902178.html;jsessionid=RGNntIRahbenOdkApeP6nNcr.x-aip-live-02?itemId=/content/aip/journal/adva/4/11/10.1063/1.4902178&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4902178&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4902178'
Right1,Right2,Right3,