Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4902893
1.
1.H. Kroemer, Physica E 20, 196 (2004).
http://dx.doi.org/10.1016/j.physe.2003.08.003
2.
2.F. M. Mohammedy and M. Jamal Deen, J. Mater. Sci.: Mater. Electron. 20, 1039 (2009).
http://dx.doi.org/10.1007/s10854-009-9927-y
3.
3.C. Liu, Y. Li, and Y. Zeng, Engineering 2, 617 (2010).
http://dx.doi.org/10.4236/eng.2010.28079
4.
4.H. S. Kim, Y. K. Noh, M. D. Kim, Y. J. Kwon, J. E. Oh, Y. H. Kim, J. Y. Lee, S. G. Kim, and K. S. Chung, J. Cryst. Growth 301–302, 230 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.223
5.
5.Y. H. Kim, J. Y. Lee, Y. G Noh, M. D. Kim, and J. E. Oh, Appl. Phys. Lett. 90, 241915 (2007).
http://dx.doi.org/10.1063/1.2747674
6.
6.Y. K. Noh, Y. J. Hwang, M. D. Kim, Y. J. Kwon, J. E. Oh, Y. H. Kim, and J. Y. Lee, J. Korean Phys. Soc. 50, 1929 (2007).
http://dx.doi.org/10.3938/jkps.50.1929
7.
7.Y. Wang, P. Ruterana, L. Desplanque, S. EI Kazzi, and X. Wallart, J. Appl. Phys. 109, 023509 (2011).
http://dx.doi.org/10.1063/1.3532053
8.
8.S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
http://dx.doi.org/10.1063/1.2172742
9.
9.S. H. Huang, G. Balakrishnan, and D. L. Huffaker, J. Appl. Phys. 105, 103104 (2009).
http://dx.doi.org/10.1063/1.3129562
10.
10.C. Wen, F. H. Li, J. Zou, and H. Chen, Acta Phys. Sin. 59, 1928 (2010).
http://dx.doi.org/10.7498/aps.59.1928
11.
11.X. Q. He, C. Wen, X. F. Duan, and H. Chen, Mater. Lett. 65, 456 (2011).
http://dx.doi.org/10.1016/j.matlet.2010.10.054
12.
12.F. Ernst and P. Pirouz, J. Mater. Res. 4, 834 (1989).
http://dx.doi.org/10.1557/JMR.1989.0834
13.
13.Y. Ohno, N. Adachi, and S. Takeda, Appl. Phys. Lett. 83, 54 (2003).
http://dx.doi.org/10.1063/1.1587883
14.
14.N. Cherkashin, M. J. Hÿtch, E. Snoeck, A. Claverie, J. M. Hartmann, and Y. Bogumilowicz, Mater. Sci. Eng. B 124–125, 118 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.08.054
15.
15.D. Gerthsen, D. K. Biegelsen, F. A. Ponce, and J. C. Tramontana, J. Cryst. Growth 106, 157 (1990).
http://dx.doi.org/10.1016/0022-0248(90)90059-T
16.
16.M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 40, 1864 (1998).
http://dx.doi.org/10.1134/1.1130674
17.
17.M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 43, 42 (2001).
http://dx.doi.org/10.1134/1.1340184
18.
18.M. Y. Chou, M. L. Cohen, and S. G. Louie, Phys. Rev. B 32, 7979 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.7979
19.
19.Y. Kimura, N. Sugii, S. Kimura, K. Inui, and W. Hirasawa, Appl. Phys. Lett. 88, 031912 (2006).
http://dx.doi.org/10.1063/1.2167391
20.
20.C. Wen, Y. M. Wang, W. Wan, F. H. Li, J. W. Liang, and J. Zou, J. Appl. Phys. 106, 073522 (2009).
http://dx.doi.org/10.1063/1.3234380
21.
21.C. W. Liu and J. C. Sturm, J. Appl. Phys. 82, 4558 (1997).
http://dx.doi.org/10.1063/1.366192
22.
22.C. Y. Tang, J. H. Chen, H. W. Zandbergen, and F. H. Li, Ultramicroscopy 106, 539 (2006).
http://dx.doi.org/10.1016/j.ultramic.2006.01.008
23.
23.S. Kret, P. Duewski, P. Duewski, and J. Y. Laval, Philos. Mag. 83, 231 (2003).
http://dx.doi.org/10.1080/0141861021000020095
24.
24.M. J. Hÿtch, J. L. Putaux, and J. M. Pénisson, Nature 423, 270 (2003).
http://dx.doi.org/10.1038/nature01638
25.
25.J. Chung and L. Rabenberg, Appl. Phys. Lett. 91, 231902 (2007).
http://dx.doi.org/10.1063/1.2821843
26.
26.Y. H. Kim, H. J. Park, K. Kim, C. S. Kim, W. S. Yun, J. W. Lee, and M. D. Kim, Appl. Phys. Lett. 95, 033112 (2009).
http://dx.doi.org/10.1063/1.3184541
27.
27.Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, Acta Mater. 61, 617 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.09.082
28.
28.Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, L. V. Sokolov, and A. P. Vasilenko, Acta Mater. 61, 5400 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.05.028
29.
29.M. J. Hÿtch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).
http://dx.doi.org/10.1016/S0304-3991(98)00035-7
30.
30.M. J. Hÿtch and T. Plamann, Ultramicroscopy 87, 199 (2001).
http://dx.doi.org/10.1016/S0304-3991(00)00099-1
31.
31.F. Hüe, C. L. Johnson, S. Lartigue-Korinek, G. Wang, P. R. Buseck, and M. J. Hÿtch, J. Electron Microsc. 54, 181 (2005).
http://dx.doi.org/10.1093/jmicro/dfi042
32.
32.M. J. Hÿtch and F. Houdellier, Microelectron. Eng. 84, 460 (2007).
http://dx.doi.org/10.1016/j.mee.2006.10.062
33.
33.F. Hüe, M. J. Hÿtch, J. M. Hartmann, Y. Bogumilowicz, and A. Claverie, Springer Proc. Phys. 120, 149 (2008).
http://dx.doi.org/10.1007/978-1-4020-8615-1_31
34.
34.W. T. Yu and W. Mader, Ultramicroscopy 110, 411 (2010).
http://dx.doi.org/10.1016/j.ultramic.2009.11.023
35.
35.S. H. Vajargah, M. Couillard, K. Cui, S. G. Tavakoli, B. Robinson, R. N. Kleiman, J. S. Preston, and G. A. Botton, Appl. Phys. Lett. 98, 082113 (2011).
http://dx.doi.org/10.1063/1.3551626
36.
36.J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (John Wiley & Sons, Inc, New York, 1982).
37.
37.D. Hull and D. J. Bacon, Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, 2001).
38.
38.M. Ichimura and J. Narayan, Philos. Mag. A 73, 767 (1996).
http://dx.doi.org/10.1080/01418619608242996
39.
39.J. Zou and D. J. H. Cockayne, J. Appl. Phys. 77, 2448 (1995).
http://dx.doi.org/10.1063/1.358772
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4902893
Loading
/content/aip/journal/adva/4/11/10.1063/1.4902893
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4902893
2014-11-24
2016-12-04

Abstract

The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ε and ε, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ε and ε strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4902893.html;jsessionid=zSHSR9lhMfZBiq1U1orc4hpL.x-aip-live-03?itemId=/content/aip/journal/adva/4/11/10.1063/1.4902893&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4902893&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4902893'
Right1,Right2,Right3,