Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. Kroemer, Physica E 20, 196 (2004).
2.F. M. Mohammedy and M. Jamal Deen, J. Mater. Sci.: Mater. Electron. 20, 1039 (2009).
3.C. Liu, Y. Li, and Y. Zeng, Engineering 2, 617 (2010).
4.H. S. Kim, Y. K. Noh, M. D. Kim, Y. J. Kwon, J. E. Oh, Y. H. Kim, J. Y. Lee, S. G. Kim, and K. S. Chung, J. Cryst. Growth 301–302, 230 (2007).
5.Y. H. Kim, J. Y. Lee, Y. G Noh, M. D. Kim, and J. E. Oh, Appl. Phys. Lett. 90, 241915 (2007).
6.Y. K. Noh, Y. J. Hwang, M. D. Kim, Y. J. Kwon, J. E. Oh, Y. H. Kim, and J. Y. Lee, J. Korean Phys. Soc. 50, 1929 (2007).
7.Y. Wang, P. Ruterana, L. Desplanque, S. EI Kazzi, and X. Wallart, J. Appl. Phys. 109, 023509 (2011).
8.S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).
9.S. H. Huang, G. Balakrishnan, and D. L. Huffaker, J. Appl. Phys. 105, 103104 (2009).
10.C. Wen, F. H. Li, J. Zou, and H. Chen, Acta Phys. Sin. 59, 1928 (2010).
11.X. Q. He, C. Wen, X. F. Duan, and H. Chen, Mater. Lett. 65, 456 (2011).
12.F. Ernst and P. Pirouz, J. Mater. Res. 4, 834 (1989).
13.Y. Ohno, N. Adachi, and S. Takeda, Appl. Phys. Lett. 83, 54 (2003).
14.N. Cherkashin, M. J. Hÿtch, E. Snoeck, A. Claverie, J. M. Hartmann, and Y. Bogumilowicz, Mater. Sci. Eng. B 124–125, 118 (2005).
15.D. Gerthsen, D. K. Biegelsen, F. A. Ponce, and J. C. Tramontana, J. Cryst. Growth 106, 157 (1990).
16.M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 40, 1864 (1998).
17.M. Yu. Gutkin, K. N. Mikaelyan, and I. A. Ovid’ko, Phys. Solid State 43, 42 (2001).
18.M. Y. Chou, M. L. Cohen, and S. G. Louie, Phys. Rev. B 32, 7979 (1985).
19.Y. Kimura, N. Sugii, S. Kimura, K. Inui, and W. Hirasawa, Appl. Phys. Lett. 88, 031912 (2006).
20.C. Wen, Y. M. Wang, W. Wan, F. H. Li, J. W. Liang, and J. Zou, J. Appl. Phys. 106, 073522 (2009).
21.C. W. Liu and J. C. Sturm, J. Appl. Phys. 82, 4558 (1997).
22.C. Y. Tang, J. H. Chen, H. W. Zandbergen, and F. H. Li, Ultramicroscopy 106, 539 (2006).
23.S. Kret, P. Duewski, P. Duewski, and J. Y. Laval, Philos. Mag. 83, 231 (2003).
24.M. J. Hÿtch, J. L. Putaux, and J. M. Pénisson, Nature 423, 270 (2003).
25.J. Chung and L. Rabenberg, Appl. Phys. Lett. 91, 231902 (2007).
26.Y. H. Kim, H. J. Park, K. Kim, C. S. Kim, W. S. Yun, J. W. Lee, and M. D. Kim, Appl. Phys. Lett. 95, 033112 (2009).
27.Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, and L. V. Sokolov, Acta Mater. 61, 617 (2013).
28.Y. B. Bolkhovityanov, A. S. Deryabin, A. K. Gutakovskii, L. V. Sokolov, and A. P. Vasilenko, Acta Mater. 61, 5400 (2013).
29.M. J. Hÿtch, E. Snoeck, and R. Kilaas, Ultramicroscopy 74, 131 (1998).
30.M. J. Hÿtch and T. Plamann, Ultramicroscopy 87, 199 (2001).
31.F. Hüe, C. L. Johnson, S. Lartigue-Korinek, G. Wang, P. R. Buseck, and M. J. Hÿtch, J. Electron Microsc. 54, 181 (2005).
32.M. J. Hÿtch and F. Houdellier, Microelectron. Eng. 84, 460 (2007).
33.F. Hüe, M. J. Hÿtch, J. M. Hartmann, Y. Bogumilowicz, and A. Claverie, Springer Proc. Phys. 120, 149 (2008).
34.W. T. Yu and W. Mader, Ultramicroscopy 110, 411 (2010).
35.S. H. Vajargah, M. Couillard, K. Cui, S. G. Tavakoli, B. Robinson, R. N. Kleiman, J. S. Preston, and G. A. Botton, Appl. Phys. Lett. 98, 082113 (2011).
36.J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (John Wiley & Sons, Inc, New York, 1982).
37.D. Hull and D. J. Bacon, Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, 2001).
38.M. Ichimura and J. Narayan, Philos. Mag. A 73, 767 (1996).
39.J. Zou and D. J. H. Cockayne, J. Appl. Phys. 77, 2448 (1995).

Data & Media loading...


Article metrics loading...



The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ε and ε, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ε and ε strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd