Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/11/10.1063/1.4902896
1.
1.G. Mavko, T. Mukerji, and N. Godfrey, “Predicting stress-induced velocity anisotropy in rocks,” Geophysics 60, 10811087 (1995).
http://dx.doi.org/10.1190/1.1443836
2.
2.M.D. Sharma and CArG Neetu, “Wave velocities in a pre-stressed anisotropic elastic medium,” Journal of Earth System Science 115, 257265 (2006).
http://dx.doi.org/10.1007/BF02702040
3.
3.B.K. Sinha, “Elastic Waves in Crystals under a Bias,” Ferroelectrics 41, 6173 (1982).
http://dx.doi.org/10.1080/00150198208210610
4.
4.B.K. Sinha, S. Kostek, and A.N. Norris, “Stoneley and Flexural Modes in Pressurized Boreholes,” Journal of Geophysical Research 100, 2237522381 (1995).
http://dx.doi.org/10.1029/95JB02504
5.
5.B.K. Sinha, Q-H. Liu, and S. Kostek, “Acoustic waves in pressurized boreholes: A finite-difference formulation,” Journal of Geophysical Research 101, 2517325180 (1996).
http://dx.doi.org/10.1029/96JB02724
6.
6.B. K. Sinha and S. Kostek, “Stress-induced azimuthal anisotropy in borehole flexural waves,” Geophysics 61, 18991907 (1996).
http://dx.doi.org/10.1190/1.1444105
7.
7.B.K. Sinha and K.W. Winkler, “Formation nonlinear constants from sonic measurements at two borehole pressures,” Geophysics 64, 18901900 (1999).
http://dx.doi.org/10.1190/1.1444695
8.
8.B.K. Sinha, “Stress-induced changes in the borehole Stoneley and flexural dispersions,” 71st SEG Annual International Meeting, San Antonio, Texas, USA , Expanded Abstracts (2001) pp. 337340.
9.
9.K.W. Winkler, B. K. Sinha, and T.J. Plona, “Effects of borehole stress concentrations on dipole anisotropy measurements,” Geophysics 63, 1117 (1998).
http://dx.doi.org/10.1190/1.1444303
10.
10.B. K. Sinha, M. R. Kane, and B. Frignet, “Dipole dispersion crossover and sonic logs in a limestone reservoir,” Geophysics 65, 390407 (2000).
http://dx.doi.org/10.1190/1.1444734
11.
11.Z L. Cao, K X. Wang, G. Li, R H. Xie, J S. Liu, and X M. Lu, “Dipole flexural waves splitting induced by borehole pressurization and formation stress concentration,” Chinese Journal of Geophysics 46, 10211030 (2003).
http://dx.doi.org/10.1002/cjg2.421
12.
12.Z.L. Cao, K. X. Wang, and Z.T. Ma, “Acoustoelastic effects on guided waves in a fluid-filled pressurized borehole in a prestressed formation,” Journal of the Acoustic Society of America 116, 14061415 (2004).
http://dx.doi.org/10.1121/1.1777857
13.
13.J.X. Liu, Z. W. Cui, and K. X. Wang, “The relationships between uniaxial stress and reflection coefficients,” Geophysical Journal International 179, 15841592 (2009).
http://dx.doi.org/10.1111/j.1365-246X.2009.04305.x
14.
14.L. Ting, B. K. Sinha, and M. Sanders, “Estimation of horizontal stress magnitudes and stress coefficients of velocities using borehole sonic data,” Geophysics 77, WA181WA196 (2012).
http://dx.doi.org/10.1190/geo2011-0277.1
15.
15.D.S. Hughes and J.L. Kelly, “Second-order elastic deformation of solids,” Physical Review 92, 11451149 (1953).
http://dx.doi.org/10.1103/PhysRev.92.1145
16.
16.V. Bakulin and A. Protosenya, “Ultrasonic polarizational method of determination of stress in rock mass,” Mining Geophysics (in Russian) , 9697 (1981).
17.
17.P.A. Johnson and P.N.J. Rasolofosaon, “Nonlinear elasticity and stress-induced anisotropy in rocks,” Journal of Geophysical Research 101, 31133124 (1996).
http://dx.doi.org/10.1029/95JB02880
18.
18.K.W. Winkler and X.Z. Liu, “Measurements of third-order elastic constants in rocks,” Journal of the Acoustic Society of America 100, 13921398 (1996).
http://dx.doi.org/10.1121/1.415986
19.
19.D. Sarkar, A. Bakulin, and R.L. Kranz, “Anisotropic inversion of seismic data for stressed media:Theory and a physical modeling study on Berea Sandstone,” Geophysics 68, 690704 (2003).
http://dx.doi.org/10.1190/1.1567240
20.
20.R. Prioul, A. Bakulin, and V. Bakulin, “Nonlinear rock model for estimation of 3D subsurface stress in anisotropic formation: Theory and laboratory verification,” Geophysics 69, 415425 (2004).
http://dx.doi.org/10.1190/1.1707061
21.
21.G. Li, “Acoustoelastic theory of guide waves in a cased hole and inversion of formation stress by cross-dipole acoustic logging,” Ph.D. thesis, Jilin University, 2005.
22.
22.J.X. Liu, K. X. Wang, Z. L. Cao, R.H. Xie, J.S. Liu, and X.M. Lv, “The effects of stress concentrations of cased hole on induced azimuthal anisotropy velocity distribution,” Chinese Journal of Geophysics 48, 717723 (2005).
23.
23.I. Tsvankin, Seismic signatures and analysis of reflection data in anisotropic media (Elsevier Scientific Publ. Co., Inc, 2001).
24.
24.Z.J. Wang, “Seismic anisotropy in sedimentary rocks, part 2: Laboratory data,” Geophysics 67, 14231440 (2002).
http://dx.doi.org/10.1190/1.1512743
25.
25.X. M. Tang, Quantitative Borehole Acoustic Methods (Elsevier Ltd, 2004).
26.
26.H.P. Valero, T. IKegami, Bikash. Sinha, S. Bose, and T. Plona, “Sonic dispersion curves identify TIV anisotropy in vertical wells,” in 79th SEG meeting, Houston, Texas, USA, Expanded Abstracts (2009) pp. 322325.
27.
27.I.J. Fritz, “Third-order elastic constants for materials with transversely isotropic symmetry,” Journal of Applied Physics 48, 812814 (1977).
http://dx.doi.org/10.1063/1.323647
28.
28.R.F.S. Hearmon, “Third–order elastic coefficients,” Acta Crystallographica 6, 331340 (1953).
http://dx.doi.org/10.1107/S0365110X53000909
29.
29.J.X. Liu, Z.W. Cui, G. Li, W.G. Lv, Z. L. Cao, and K.X. Wang, “Acoustoelastic effects flexural waves in a borehole surrounded by a transversely isotropic(VTI) elastic solid,” Chinese Journal of Geophysics. 50, 34853492 (2012).
http://dx.doi.org/10.6038/j.issn.0001-5733.2012.10.032
30.
30.R. N. Thurston and K. Brugger, “Third–order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media,” Physical Review 133, A1604A1610 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A1604
31.
31.A.N. Norris, B. K. Sinha, and S. Kostek, “Acoustoelasticity of solid/fluid composite systems,” Geophysical Journal International 118, 439446 (1994).
http://dx.doi.org/10.1111/j.1365-246X.1994.tb03975.x
32.
32.B. Amadei, “Rock anisotropy and the theory of stress measurements,” Lecture notes in engineering Series (Springer, New York, 1983).
33.
33.O. Gaede, F. Karpfinger, J. Jocker, and R. Prioul, “Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic rock,” International Journal of Rock Mechanics & Mining Sciences 51, 5363 (2012).
http://dx.doi.org/10.1016/j.ijrmms.2011.12.010
34.
34.A.N. Norris and B. K. Sinha, “The speed of a wave along a fluid/solid interface in the presence of anisotropy and prestress,” Journal of the Acoustic Society of America 98, 11471154 (1995).
http://dx.doi.org/10.1121/1.413613
35.
35.R.K. Mallan, C. Torres-Verdin, and J. Ma, “Simulation of borehole sonic waveforms in dipping, anisotropic, and invaded formations,” Geophysics 76, E127E139 (2011).
http://dx.doi.org/10.1190/1.3589101
36.
36.J.E. White and C. Tongtaow, “Cylindrical waves in transversely isotropic media,” Journal of the Acoustic Society of America 70, 11471155 (1981).
http://dx.doi.org/10.1121/1.386946
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/11/10.1063/1.4902896
Loading
/content/aip/journal/adva/4/11/10.1063/1.4902896
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/11/10.1063/1.4902896
2014-11-26
2016-12-11

Abstract

Stoneley wave in a fluid-filled pressurized borehole surrounded by a transversely isotropic elastic solid with nine independent third-order elastic constants in presence of biaxial stresses are studied. A simplified acoustoelastic formulation of Stoneley wave is presented for the parallelism of the borehole axis and the formation axis of symmetry. Sensitivity coefficients and velocity dispersions for Stoneley wave due to the presence of stresses are numerically investigated, respectively. The acoustoelastic formulation explicitly shows that the velocity dispersions of Stoneley wave depend on seven independent third-order elastic constants in presence of biaxial stresses and on six independent third-order elastic constants in the presence of borehole pressurization alone. Numerical results of both sensitivity coefficients and velocity dispersions of Stoneley wave show that at low frequency the velocity change of Stoneley wave is sensitive to c and c. Stoneley wave velocity at low frequencies can be simplified by 3 independent third order elastic constants (c, c and c) instead of nine constants. In presence of biaxial stresses, at low frequencies the speed of the Stoneley wave is similar to White’s formula.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/11/1.4902896.html;jsessionid=jJVJOukpk_6hmZwZDRgvZDVP.x-aip-live-02?itemId=/content/aip/journal/adva/4/11/10.1063/1.4902896&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/11/10.1063/1.4902896&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/11/10.1063/1.4902896'
Right1,Right2,Right3,