Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. X. Yan, D. Gargas, and P. D. Yang, Nature Photonics 3(10), 569576 (2009).
2.J. S. Jie, W. J. Zhang, I. Bello, C. S. Lee, and S. T. Lee, Nano Today 5(4), 313336 (2010).
3.Y. Z. Long, M. Yu, B. Sun, C. Z. Gu, and Z. Y. Fan, Chem. Soc. Rev. 41(12), 45604580 (2012).
4.T. Y. Zhai, L. Li, X. Wang, X. S. Fang, Y. Bando, and D. Golberg, Adv. Funct. Mater. 20(24), 42334248 (2010).
5.P. N. Ni, C. X. Shan, S. P. Wang, B. H. Li, Z. Z. Zhang, D. X. Zhao, L. Liu, and D. Z. Shen, J. Phys. Chem. C 116(1), 13501353 (2012).
6.P. C. Wu, Y. Dai, T. Sun, Y. Ye, H. Meng, X. L. Fang, B. Yu, and L. Dai, ACS Appl. Mater. Interfaces 3(6), 18591864 (2011).
7.L. F. Hu, J. Yan, M. Y. Liao, H. J. Xiang, X. G. Gong, L. D. Zhang, and X. S. Fang, Adv. Mater. 24(17), 23052309 (2012).
8.J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, Nano Lett. 6(9), 18871892 (2006).
9.J. C. Dai, X. Xu, X. Y. Xu, J. Y. Guo, J. T. Li, G. Y. Zhu, and Y. Lin, ACS Appl. Mater. Interfaces 5(19), 93449348 (2013).
10.F. González-Posada, R. Songmuang, M. D. Hertog, and E. Monroy, Nano Lett. 12(1), 172176 (2012).
11.J. Svensson, N. Anttu, N. Vainorius, B. M. Borg, and L. E. Wernersson, Nano Lett. 13(4), 13801385 (2013).
12.Z. Li, J. Salfi, C. D. Souza, P. Sun, S. V. Nair, and H. E. Ruda, Appl. Phys. Lett. 97(6), 063510 (2010).
13.Z. X. Wang, M. Safdar, C. Jiang, and J. He, Nano Lett. 12(9), 47154721 (2012).
14.C. Y. Wu, J. S. Jie, L. Wang, Y. Q. Yu, Q. Peng, X. W. Zhang, J. J. Cai, H. E. Guo, D. Wu, and Y. Jiang, Nanotechnology 21(50), 505203 (2010).
15.W. C. Zhou, D. S. Tang, and B. S. Zou, J. Alloys Comp. 551, 150154 (2013).
16.D. H. Li, J. Zhang, Q. Zhang, and Q. H. Xiong, Nano Lett. 12(6), 29932999 (2012).
17.D. Wu, Y. Jiang, Y. G. Zhang, Y. Yu, Z. F. Zhu, X. Z. Lan, F. Z. Li, C. Y. Wu, L. Wang, and L. B. Luo, J. Mater. Chem. 22(43), 2327223276 (2012).
18.Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, Adv. Funct. Mater. 17(11), 17951800 (2007).
19.C. L. Hoenig and A. W. Searcy, J. Am. Ceram. Soc. 49(3), 128134 (1966).
20.P. X. Gao and Z. L. Wang, J. Phys. Chem. B 106(49), 1265312658 (2012).
21.C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181(3), 1351 (1969).
22.M. J. Seong, O. I. Micic, A. J. Nozik, A. Mascarenhas, and H. M. Cheong, Appl. Phys. Lett. 82(2), 185 (2003).
23.A. L. Pan, R. B. Liu, Q. Yang, Y. C. Zhu, G. Z. Yang, B. S. Zou, and K. Q. Chen, J. Phys. Chem. B 109(51), 2426824272 (2005).
24.A. J. Smith, P. E. Meek, and W. Y. Liang, J. Phys. C: Solid State Phys. 10(8), 1321 (1977).
25.L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, and M. Roumyantseva, J. Solid State Chem. 135(1), 7885 (1998).
26.T. Gao, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 86(17), 173105 (2005).
27.M. Y. Liao, X. Wang, T. Teraji, S. Koizumi, and Y. Koide, Phys. Rev. B 81(3), 033304 (2010).
28.M. Y. Zhang, M. Wille, R. Roder, S. Heedt, L. B. Huang, Z. Zhu, S. Geburt, D. Grutzmacher, T. Schapers, C. Ronning, and J. G. Lu, Nano Lett. 14(2), 518523 (2014).
29.W. C. Zhou, A. L. Pan, Y. Li, G. Z. Dai, Q. Wan, Q. L. Zhang, and B. S. Zou, J. Phys. Chem. C 112(25), 92539260 (2008).
30.J. Butty, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Appl. Phys. Lett. 69(21), 3224 (1996).
31.R. B. Liu, X. J. Zhuang, J. Y. Xu, D. B. Li, Q. L. Zhang, K. Ding, P. B. He, C. Z. Ning, B. S. Zou, and A. L. Pan, Appl. Phys. Lett. 99(26), 263101 (2011).
32.T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys. Rev. Lett. 93(10), 103903 (2004).
33.B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, J. Phys. Chem. C 115(26), 1282612830 (2011).

Data & Media loading...


Article metrics loading...



High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd