Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4901881
1.
1.C. S. Andreasen, “Damping in porous beams,” Technical Report (Technical University of Denmark, 2011).
2.
2.J. P. Den Hartog, Mechanical Vibrations (McGraw-Hill, New York, 1934).
3.
3.T. Asami and O. Nishihara, J. Vib. Acoust 125, 398 (2003).
http://dx.doi.org/10.1115/1.1569514
4.
4.R. Viguie and G. Kerschen, “The Nonlinear Tuned Vibration Absorber,” in MATEC Web of Conferences, edited by M. Belhaq and R. Ibrahim (2012), Vol. 1, p. 05007.
5.
5.M. Strasberg and D. Feit, J. Acoust. Soc. Am 99(1), 335 (1996).
http://dx.doi.org/10.1121/1.414545
6.
6.R. J. Nagem, I. Veljkovic, and G. Sandri, J. Sound Vib 207(3), 429 (1997).
http://dx.doi.org/10.1006/jsvi.1997.1162
7.
7.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
8.
8.J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, Nature Communications 3, 756 (2012).
http://dx.doi.org/10.1038/ncomms1758
9.
9.L. Brillouin, Wave Propagation in Periodic Structures (Dover Publications Inc, New York, 1953).
10.
10.D. L. Yu, Y. Z. Liu, G. Wang, L. Cai, and J. Qiu, Phys. Lett. A 348, 410 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.08.067
11.
11.H. H. Huang, C. T. Sun, and G. L. Huang, Int. J. Eng. Sci 47, 610 (2009).
http://dx.doi.org/10.1016/j.ijengsci.2008.12.007
12.
12.J. S. Jensen, J. Sound Vib 266, 1053 (2003).
http://dx.doi.org/10.1016/S0022-460X(02)01629-2
13.
13.B. S. Lazarov and J. S. Jensen, Int. J. Non-linear Mech 42, 1186 (2007).
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.09.007
14.
14.M. I. Hussein and M. J. Frazier, J. Sound Vib 332(20), 4767 (2013).
http://dx.doi.org/10.1016/j.jsv.2013.04.041
15.
15.M. I. Hussein, M. J. Leamy, and M. Ruzzene, Appl. Mech. Rev 66(4), 040802 (2014).
http://dx.doi.org/10.1115/1.4026911
16.
16.H. Hosaka, K. Itao, and S. Kuroda, Sensor Actuat A-Phys 49, 87 (1995).
http://dx.doi.org/10.1016/0924-4247(95)01003-J
17.
17.COMSOL Reference Manual for COMSOL 4.4.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4901881
Loading
/content/aip/journal/adva/4/12/10.1063/1.4901881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4901881
2014-11-13
2016-12-10

Abstract

The aim of this paper is to investigate the enhancement of the damping ratio of a structure with embedded microbeam resonators in air-filled internal cavities. In this context, we discuss theoretical aspects in the framework of the effective modal damping ratio (MDR) and derive an approximate relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE) analysis with acoustic-structure interaction (ASI) using a simple phenomenological acoustic loss model. An eigenvalue analysis is carried out to demonstrate the improvement of the damping characteristic of the macrobeam with the resonating microbeam in the lossy air and the results are compared to a forced vibration analysis for a macrobeam with one or multiple embedded microbeams. Finally we demonstrate the effect of randomness in terms of position and size of microbeams and discuss the difference between the phenomenological acoustic loss model and a full thermoacoustic model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4901881.html;jsessionid=rWwD2v1Iusrq26o6OYW43TPE.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4901881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4901881&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4901881'
Right1,Right2,Right3,