Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
2.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
3.M. M. Sigalas and N. Garcia, J. Appl. Phys. 87, 3122 (2000).
4.S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
5.E. Soliveres, V. Espinosa, I. Pérez-Arjona, V. Sánchez-Morcillo, and K. Staliunas, Appl. Phys. Lett. 94, 164101 (2009).
6.R. Martínez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).
7.J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
8.A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, Phys. Rev. B 81, 214303 (2010).
9.Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, PRB 83, 104201 (2011).
10.T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
11.S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. Phys. Lett. 98, 171908 (2011).
12.S. Mohammadi, A. Eftekhar, A. Khelif, W. Hunt, and A. Adibi, Appl. Phys. Lett. 92, 221905 (2008).
13.A. Khelif, Y. Achaoui, and B. Aoubiza, AIP Advances 1, 041404 (2011).
14.G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, Phys. Rev. Lett. 93, 154302 (2004).
15.J.-C. Hsu and T.-T. Wu, Appl. Phys. Lett. 90, 201904 (2007).
16.A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Phys. Rev. B 68, 214301 (2003).
17.A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
18.A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. Djafari-Rouhani, Phys. Rev. E 69, 067601 (2004).
19.Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, Appl. Phys. Lett. 87, 261912 (2005).
20.Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 (1998).
21.N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Nat. Mater. 5, 452 (2006).
22.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
23.A. Ramakrishna, Reports on Progress in Physics 68, 449 (2005).
24.J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
25.C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 65, 201104 (2002).
26.A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, Phys. Rev. Lett. 102, 154301 (2009).
27.J.-F. Robillard, J. Bucay, P. A. Deymier, A. Shelke, K. Muralidharan, B. Merheb, J. O. Vasseur, A. Sukhovich, and J. H. Page, Phys. Rev. B 83, 224301 (2011).
28.Z. Xiangdong and L. Zhengyou, Appl. Phys. Lett. 85, 341 (2004).
29.M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, Phys. Rev. Lett. 101, 134501 (2008).
30.A. Sukhovich, L. Jing, and J. H. Page, Phys. Rev. B 77, 014301 (2008).
31.I. A. Veres, T. Berer, O. Matsuda, and P. Burgholzer, Journal of Applied Physics 112, 053504 (2012).
32.J.-P. Berenger, Journal of Computational Physics 114, 185 (1994).

Data & Media loading...


Article metrics loading...



In this study, we theoretically analyze the guiding of surface phonons through locally resonant defects in pillars-based phononic crystal. Using finite element method, we simulate the propagation of surface phonons through a periodic array of cylindrical pillars deposited on a semi-infinite substrate. This structure displays several band gaps, some of which are due to local resonances of the pillar. By introducing pillar defects inside the phononic structure, we show the possibility to perform a waveguiding of surface phonons based on two mechanisms that spatially confine the elastic energy in very small waveguide apertures. A careful choice of the height of the defect pillars, allows to shift the frequency position of the defect modes inside or outside the locally resonant band gaps and create two subwavelenght waveguiding mechanisms. The first is a classical mechanism that corresponds to the presence of the defect modes inside the locally resonant band gap. The seconde is due to the hybridation between the phonon resonances of defect modes and the surface phonons of the semi-infinite homogenous medium. We discuss the nature and the difference between both waveguiding phenomena.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd