Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4901909
1.
1.M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
2.
2.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
3.
3.M. M. Sigalas and N. Garcia, J. Appl. Phys. 87, 3122 (2000).
http://dx.doi.org/10.1063/1.372308
4.
4.S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.024301
5.
5.E. Soliveres, V. Espinosa, I. Pérez-Arjona, V. Sánchez-Morcillo, and K. Staliunas, Appl. Phys. Lett. 94, 164101 (2009).
http://dx.doi.org/10.1063/1.3104861
6.
6.R. Martínez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).
http://dx.doi.org/10.1038/378241a0
7.
7.J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3012
8.
8.A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, Phys. Rev. B 81, 214303 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.214303
9.
9.Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, PRB 83, 104201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104201
10.
10.T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
http://dx.doi.org/10.1063/1.2970992
11.
11.S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. Phys. Lett. 98, 171908 (2011).
http://dx.doi.org/10.1063/1.3583982
12.
12.S. Mohammadi, A. Eftekhar, A. Khelif, W. Hunt, and A. Adibi, Appl. Phys. Lett. 92, 221905 (2008).
http://dx.doi.org/10.1063/1.2939097
13.
13.A. Khelif, Y. Achaoui, and B. Aoubiza, AIP Advances 1, 041404 (2011).
http://dx.doi.org/10.1063/1.3675923
14.
14.G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, Phys. Rev. Lett. 93, 154302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.154302
15.
15.J.-C. Hsu and T.-T. Wu, Appl. Phys. Lett. 90, 201904 (2007).
http://dx.doi.org/10.1063/1.2739369
16.
16.A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Phys. Rev. B 68, 214301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214301
17.
17.A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
http://dx.doi.org/10.1063/1.1757642
18.
18.A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. Djafari-Rouhani, Phys. Rev. E 69, 067601 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.067601
19.
19.Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, Appl. Phys. Lett. 87, 261912 (2005).
http://dx.doi.org/10.1063/1.2158019
20.
20.Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7958
21.
21.N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Nat. Mater. 5, 452 (2006).
http://dx.doi.org/10.1038/nmat1644
22.
22.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
23.
23.A. Ramakrishna, Reports on Progress in Physics 68, 449 (2005).
http://dx.doi.org/10.1088/0034-4885/68/2/R06
24.
24.J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
25.
25.C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev. B 65, 201104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.201104
26.
26.A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, Phys. Rev. Lett. 102, 154301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.154301
27.
27.J.-F. Robillard, J. Bucay, P. A. Deymier, A. Shelke, K. Muralidharan, B. Merheb, J. O. Vasseur, A. Sukhovich, and J. H. Page, Phys. Rev. B 83, 224301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224301
28.
28.Z. Xiangdong and L. Zhengyou, Appl. Phys. Lett. 85, 341 (2004).
http://dx.doi.org/10.1063/1.1772854
29.
29.M. Farhat, S. Enoch, S. Guenneau, and A. B. Movchan, Phys. Rev. Lett. 101, 134501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.134501
30.
30.A. Sukhovich, L. Jing, and J. H. Page, Phys. Rev. B 77, 014301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014301
31.
31.I. A. Veres, T. Berer, O. Matsuda, and P. Burgholzer, Journal of Applied Physics 112, 053504 (2012).
http://dx.doi.org/10.1063/1.4747931
32.
32.J.-P. Berenger, Journal of Computational Physics 114, 185 (1994).
http://dx.doi.org/10.1006/jcph.1994.1159
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4901909
Loading
/content/aip/journal/adva/4/12/10.1063/1.4901909
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4901909
2014-11-11
2016-09-26

Abstract

In this study, we theoretically analyze the guiding of surface phonons through locally resonant defects in pillars-based phononic crystal. Using finite element method, we simulate the propagation of surface phonons through a periodic array of cylindrical pillars deposited on a semi-infinite substrate. This structure displays several band gaps, some of which are due to local resonances of the pillar. By introducing pillar defects inside the phononic structure, we show the possibility to perform a waveguiding of surface phonons based on two mechanisms that spatially confine the elastic energy in very small waveguide apertures. A careful choice of the height of the defect pillars, allows to shift the frequency position of the defect modes inside or outside the locally resonant band gaps and create two subwavelenght waveguiding mechanisms. The first is a classical mechanism that corresponds to the presence of the defect modes inside the locally resonant band gap. The seconde is due to the hybridation between the phonon resonances of defect modes and the surface phonons of the semi-infinite homogenous medium. We discuss the nature and the difference between both waveguiding phenomena.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4901909.html;jsessionid=nyFsaFxLftxy9Gos0cHdxgDs.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4901909&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4901909&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4901909'
Right1,Right2,Right3,