Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4902506
1.
1.P. Berini, Phys. Rev. B 61, 1048410503 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10484
2.
2.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824830 (2003).
http://dx.doi.org/10.1038/nature01937
3.
3.D. K. Gramotnev and S. I. Bozhevolnyi, Nat. Photonics 4, 8391 (2010).
http://dx.doi.org/10.1038/nphoton.2009.282
4.
4.W. Nomura, M. Ohtsu, and T. Yatsui, Appl. Phys. Lett. 86, 181108 (2005).
http://dx.doi.org/10.1063/1.1920419
5.
5.G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
http://dx.doi.org/10.1063/1.2056594
6.
6.T. Lee and S. Gray, Opt. Express 13, 96529659 (2005).
http://dx.doi.org/10.1364/OPEX.13.009652
7.
7.H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, Opt. Express 13, 1079510800 (2005).
http://dx.doi.org/10.1364/OPEX.13.010795
8.
8.H. Zhao, X. Huang, and J. Huang, Physica E 40, 30253029 (2008).
http://dx.doi.org/10.1016/j.physe.2008.02.019
9.
9.Z. Han and S. He, Opt. Commun. 278, 199203 (2007).
http://dx.doi.org/10.1016/j.optcom.2007.05.058
10.
10.Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690695 (2006).
http://dx.doi.org/10.1016/j.optcom.2005.09.034
11.
11.H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, Opt. Express 19, 1288512890 (2011).
http://dx.doi.org/10.1364/OE.19.012885
12.
12.Y. Gong, L. Wang, X. Liu, and X. Li, Opt. Express 17, 1372713736 (2009).
http://dx.doi.org/10.1364/OE.17.013727
13.
13.Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, Appl. Phys. Lett. 90, 161130 (2007).
http://dx.doi.org/10.1063/1.2731524
14.
14.Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, Opt. Express 15, 1805018055 (2007).
http://dx.doi.org/10.1364/OE.15.018050
15.
15.Z. Fu, Q. Gan, K. Gao, Z. Pan, and F. J. Bartoli, J. Lightwave Technol. 26, 36993703 (2008).
http://dx.doi.org/10.1109/JLT.2008.927793
16.
16.N. Bonod, E. Popov, L. Li, and B. Chernov, Optics Express 15, 1142711432 (2007).
http://dx.doi.org/10.1364/OE.15.011427
17.
17.F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. G. Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, Nat. Phys. 3, 324328 (2007).
http://dx.doi.org/10.1038/nphys584
18.
18.T. F. Krauss, Nat. Photonics 2, 448450 (2008).
http://dx.doi.org/10.1038/nphoton.2008.139
19.
19.C. Liu, Z. Dutton, C. Behroozi, and L. Hau, Nature 409, 409411 (2001).
http://dx.doi.org/10.1038/35054017
20.
20.J. B. Khurgin, J. Opt. Soc. Am. B 22, 10621074 (2005).
http://dx.doi.org/10.1364/JOSAB.22.001062
21.
21.M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. D. Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, Nature 432, 206209 (2004).
http://dx.doi.org/10.1038/nature03045
22.
22.F. Xia, L. Sekaric, and Y. Vlasov, Nat. Photonics 1, 6571 (2007).
http://dx.doi.org/10.1038/nphoton.2006.42
23.
23.K. -J. Boller, A. Imamolu, and S. Harris, Phys. Rev. Lett. 66, 25932596 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2593
24.
24.M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633673 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.633
25.
25.S. Darmawan, L. Y. M. Tobing, and D. H. Zhang, Opt. Express 19, 1781317819 (2011).
http://dx.doi.org/10.1364/OE.19.017813
26.
26.F. G. Liu, M. Z. Ke, A. Q. Zhang, W. J. Wen, J. Shi, Z. Y. Liu, and P. Sheng, Phys. Rev. E 82, 026601 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.026601
27.
27.R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, Phys. Rev. Lett. 104, 243902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.243902
28.
28.Y. K. Wang, J. C. Wang, C. Liu, Q. Luo, W. X. Zhang, and S. M. Gao, Appl. Phys. Express 6, 082201 (2013).
http://dx.doi.org/10.7567/APEX.6.082201
29.
29.Y. Huang, C. Min, and G. Veronis, Appl. Phys. Lett. 99, 4311743119 (2011).
30.
30.Z. Han and S. I. Bozhevolnyi, Opt. Express 19, 32513257 (2011).
http://dx.doi.org/10.1364/OE.19.003251
31.
31.J. J. Chen, C. Wang, R. Zhang, and J. H. Xiao, Opt. Lett. 37, 51335135 (2012).
http://dx.doi.org/10.1364/OL.37.005133
32.
32.J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, Nano Lett. 12, 24942498 (2012).
http://dx.doi.org/10.1021/nl300659v
33.
33.S. Biswas, J. S. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, Nano Lett. 13, 62876291 (2013).
http://dx.doi.org/10.1021/nl403911z
34.
34.J. Song, J. Liu, K. Li, Y. Song, X. Wei, and G. Song, IEEE Photonics Technol. Lett. 26, 11041107 (2014).
http://dx.doi.org/10.1109/LPT.2014.2315501
35.
35.M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, Opt. Express 22, 1139911406 (2014).
http://dx.doi.org/10.1364/OE.22.011399
36.
36.X. Yang, X. Hu, Z. Chai, C. Lu, H. Yang, and Q. H. Gong, Appl. Phys. Lett. 104, 221114 (2014).
http://dx.doi.org/10.1063/1.4882916
37.
37.B. Yun, G. Hu, C. Wei, and Y. Cui, Mater. Res. Express 1, 036201 (2014).
http://dx.doi.org/10.1088/2053-1591/1/3/036201
38.
38.H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, Opt. Lett. 36, 3233 (2011).
http://dx.doi.org/10.1364/OL.36.003233
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4902506
Loading
/content/aip/journal/adva/4/12/10.1063/1.4902506
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4902506
2014-11-20
2016-09-30

Abstract

The plasmonic waveguides with unsymmetrical grooves shaped metal-insulator–metal (MIM) structures are proposed in theory. For symmetrical and unsymmetrical groove structures, the transmission varies with the increasing of the groove depths and groove lengths. The filtering characteristics due to the destructive interference of the plasmonic modes are found in those subwavelength structures. The transmission line theory is utilized to interpret the transmittance and filtering phenomena. The transmission formulas are also achieved by the transmission line theory. It is found that the slow light effects are emerged in the unsymmetrical groove structures. A small group velocity (c/80) can be achieved. Finite Element Method (FEM) is conducted to verify our design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4902506.html;jsessionid=HZ0yPoUpsODkjtpah9aBf_Z3.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4902506&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4902506&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4902506'
Right1,Right2,Right3,