Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4902508
1.
1.J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light (Princeton University press, 2008).
2.
2.Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, and P. A. Deymier, Surface Science Reports 65, 229 (2010).
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
3.
3.M. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
4.
4.R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).
http://dx.doi.org/10.1038/378241a0
5.
5.X. Zhang and Z. Liu, Appl. Phys. Lett 85, 341 (2004).
http://dx.doi.org/10.1063/1.1772854
6.
6.M.-H. Lu, C. Zhang, L. Feng, J. Zhao, Y.-F. Chen, Y.-W. Mao, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, Nature Mat. 6, 744 (2007).
http://dx.doi.org/10.1038/nmat1987
7.
7.I. Pérez-Arjona, V. J. Sánchez-Morcillo, J. Redondo, V. Espinosa, and K. Staliunas, Phys. Rev. B 75, 014304 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.014304
8.
8.V. Espinosa, V. J. Sánchez-Morcillo, K. Staliunas, I. Pérez-Arjona, and J. Redondo, Phys. Rev. B 76, 140302(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.76.140302
9.
9.Y. Zhou, M.-H. Lu, L. Feng, X. Ni, Y.-F. Chen, Y.-Y. Zhu, S.-N. Zhu, and N.-B. Ming, Phys. Rev. Lett. 104, 164301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.164301
10.
10.V. Sánchez-Morcillo, R. Picó, I. Pérez-Arjona, and K. Staliunas, Applied Acoustics 73, 302 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.09.011
11.
11.R. Picó, V. Sánchez-Morcillo, I. Pérez-Arjona, and K. Staliunas, Appl. Acoust. 73, 302 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.09.011
12.
12.A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, J. Appl. Phys. 94, 1308 (2003).
http://dx.doi.org/10.1063/1.1557776
13.
13.F. Cervera, L. Sánchis, J. Sánchez-Pérez, R. Martínez-Sala, C. Rubio, and F. Meseguer, Phys. Rev Lett. 88, 023902 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.023902
14.
14.A. Cebrecos, V. Romero-García, R. Picó, I. Pérez-Arjona, V. Espinosa, V. Sánchez-Morcillo, and K. Staliunas, J. Appl. Phys. 111, 104910 (2012).
http://dx.doi.org/10.1063/1.4719082
15.
15.X. Li, X. Ni, L. Feng, M. Lu, C. He, and Y. Chen, Phys. Rev. Lett. 106, 084301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.084301
16.
16.V. Romero-García, J. Sánchez-Pérez, S. Castiñeira Ibáñez, and L. Garcia-Raffi, Appl. Phys. Lett. 96, 124102 (2010).
http://dx.doi.org/10.1063/1.3367739
17.
17.V. Romero-García, J. Sánchez-Pérez, and L. Garcia-Raffi, J. Appl. Phys. 108, 044907 (2010).
http://dx.doi.org/10.1063/1.3466988
18.
18.H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, Nature Physics 4, 945 (2008).
http://dx.doi.org/10.1038/nphys1101
19.
19.R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. Lett. 94, 205503 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.205503
20.
20.V. Romero-García, R. Picó, A. Cebrecos, V. Sánchez-Morcillo, and K. Staliunas, Appl. Phys. Lett. 102, 091906 (2013).
http://dx.doi.org/10.1063/1.4793575
21.
21.E. Cassan, C. K.-V. D. Caer, D. Marris-Morini, and L. Vivien, J. Lightwave Tech. 29, 1937 (2011).
http://dx.doi.org/10.1109/JLT.2011.2151175
22.
22.Y. Cheng, S. Kicas, J. Trull, M. Peckus, C. Cojocaru, R. Vilaseca, R. Drazdys, and K. Staliunas, Sci. Rep. 4, 6326 (2014).
http://dx.doi.org/10.1038/srep06326
23.
23.M. Kushwaha, B. Djafari-Rouhani, L. Dobrynski, and J. Vasseur, Eur. Phys. J. B 3, 155 (1998).
http://dx.doi.org/10.1007/s100510050296
24.
24.I. E. Psarobas and M. M. Sigalas, Phys. Rev. B 66, 052302 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.052302
25.
25.L. Wu and L. Chen, J. Appl. Phys. 110, 114507 (2011).
http://dx.doi.org/10.1063/1.3664856
26.
26.Y. Shen, J. Fu, and G. Yu, Phys. Lett. A 375, 3801 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.08.023
27.
27.M. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.137404
28.
28.V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, Appl. Phys. Lett. 96, 211121 (2010).
http://dx.doi.org/10.1063/1.3442501
29.
29.E. Centeno, D. Cassagne, and J.-P. Albert, Phys. Rev. B 73, 235119 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235119
31.
31.J. Redondo, R. Picó, V. J. Sánchez-Morcillo, and W. Woszczyk, J. Acoust. Soc. Am. 134, 4412 (2013).
http://dx.doi.org/10.1121/1.4828826
32.
32.A. Cicek, O. A. Kaya, M. Yilmaz, and B. Ulug, J. Appl. Phys. 111, 013522 (2012).
http://dx.doi.org/10.1063/1.3676581
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4902508
Loading
/content/aip/journal/adva/4/12/10.1063/1.4902508
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4902508
2014-11-20
2016-09-27

Abstract

The enhancement of sound inside a two dimensional exponentially chirped crystal during the soft reflections of waves is experimentally and theoretically explored in this work. The control of this enhancement is achieved by a gradual variation of the dispersion in the system by means of a chirp of the lattice constant. The sound enhancement is produced at some planes of the crystal in which the wave is softly reflected due to a progressive slowing down of the sound wave. We find that the character of the sound enhancement depends on the function of the variation of dispersion, i.e., on the function of the chirp. A simple coupled mode theory is proposed to find the analytical solutions of the sound wave enhancement in the exponentially chirped crystal. Harmonic and time domain numerical simulations are performed to interpret the concept of the soft reflections, and to check the analytically calculated field distributions both in good agreement with experiments. Specially we obtain stronger sound enhancement than in linearly chirped crystals. This sound enhancement could motivate applications in energy harvesting, e.g., to increase the efficiency of detectors and absorbers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4902508.html;jsessionid=rMP3lZab99Op0stSpHZ2MVMW.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4902508&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4902508&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4902508'
Right1,Right2,Right3,