Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903226
1.
1.S. M. Rytov, Sov. Phys. Acoustics 2, 6880 (1956).
2.
2.For a review, see, E. H. El Boudouti, B. Djafari Rouhani, A. Akjouj, and L. Dobrzynski, Surf. Sci. Rep. 64, 471 (2009).
http://dx.doi.org/10.1016/j.surfrep.2009.07.005
3.
3.M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
4.
4.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
5.
5.E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
http://dx.doi.org/10.1103/PhysRevLett.58.2059
6.
6.J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University Press, USA, 1995).
7.
7.For a recent review, see, Y. Pennec, J. Vasseur, B. Djafari Rouhani, L. Dobrzynski, and P. A. Deymier, Surf. Sci. Rep. 65, 229 (2010).
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
8.
8.Acoustic Metamaterials and Phononic Crystals, edited by P. A. Deymier (Springer, Berlin Heidelberg, 2013).
9.
9.M. Maldovan, Nature 503, 209 (2013).
http://dx.doi.org/10.1038/nature12608
10.
10.N. D. Lanzillotti-Kimura, A. Lemaitre, A. Fainstein, B. Jusserand, and B. Perrin, Phys. Rev. B 84, 115453 (2011);
http://dx.doi.org/10.1103/PhysRevB.84.115453
10.A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, Phys. Rev. Lett. 110, 037403 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.037403
11.
11.I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari Rouhani, B. Bonello, and V. Laude, Phys. Rev.B 82, 174303 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.174303
12.
12.M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature 462, 78 (2009).
http://dx.doi.org/10.1038/nature08524
13.
13.M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, Opt. Express 17, 20078 (2009).
http://dx.doi.org/10.1364/OE.17.020078
14.
14.J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, Appl. Phys. Lett. 101, 081115 (2012).
http://dx.doi.org/10.1063/1.4747726
15.
15.A. H. Safavi-Naeini and O. Painter, Opt. Express 18, 14926 (2010).
http://dx.doi.org/10.1364/OE.18.014926
16.
16.Amir H. Safavi-Naeini, Jeff T. Hill, Seán Meenehan, Jasper Chan, Simon Gröblacher, and Oskar Painter, Phys. Rev. Lett. 112, 153603 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.153603
17.
17.E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, and T. J. Kippenberg, Phys. Rev. Lett. 106, 203902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.203902
18.
18.D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, Nature Photon. 5, 605 (2011).
http://dx.doi.org/10.1038/nphoton.2011.208
19.
19.P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, Phys. Rev. X 2, 011008 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.011008
20.
20.Fu-Li Hsiao, Cheng-Yi Hsieh, Hao-Yu Hsieh, and Chien-Chang Chiu, Appl. Phys. Lett. 100, 171103 (2012).
http://dx.doi.org/10.1063/1.4705295
21.
21.Jean-Charles Beugnot and Vincent Laude, Phys. Rev. B 86, 224304 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.224304
22.
22.Tzy-Rong Lin, Chiang-Hsin Lin, and Jin-Chen Hsu, J. Appl. Phys. 113, 053508 (2013).
http://dx.doi.org/10.1063/1.4790288
23.
23.Yan Pennec, Vincent Laude, Nikos Papanikolaou, Bahram Djafari-Rouhani, Mourad Oudich, Said El Jallal, Jean Charles Beugnot, Jose M. Escalante, and Alejandro Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3 (September 2014).
http://dx.doi.org/10.1515/nanoph-2014-0004
24.
24.Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Lévêque, and B. Djafari-Rouhani, Appl. Phys. Lett. 101, 061109 (2012).
http://dx.doi.org/10.1063/1.4744539
25.
25.D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications (Springer, 1999).
26.
26.S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, Phys. Rev. E 65, 066611 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.066611
27.
27.P. Renosi and J. Sapriel, Appl. Phys. Lett. 64, 2794 (1994).
http://dx.doi.org/10.1063/1.111427
28.
28.M. Maldovan and E. L. Thomas, Appl. Phys. B 83, 595 (2006);
http://dx.doi.org/10.1007/s00340-006-2241-y
28. M. Maldovan and E. L. Thomas, Appl. Phys. Lett. 88, 251907 (2006).
http://dx.doi.org/10.1063/1.2216885
29.
29.D. Bria, M. B. Assouar, M. Oudich, Y. Pennec, J. Vasseur, and B. Djafari Rouhani, J. Appl. Phys. 109, 014507 (2011).
http://dx.doi.org/10.1063/1.3530682
30.
30.S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, J. Appl. Phys. 106, 074912 (2009).
http://dx.doi.org/10.1063/1.3243276
31.
31.S. Eljallal, M. Oudich, Y. Pennec, B. DjafariRouhani, A. Makhoute, Q. Rolland, S. Dupont, and J. Gazalet, J. Phys.: Condensed Matter 26, 015005 (2014).
http://dx.doi.org/10.1088/0953-8984/26/1/015005
32.
32.Y. Pennec, B. Djafari-Rouhani, E. H. El Boudouti, C. Li, Y. El Hassouani, J. O. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, and A. Martinez, Opt. Express 18, 14301 (2010).
http://dx.doi.org/10.1364/OE.18.014301
33.
33.S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, Opt. Express 18, 9164 (2010).
http://dx.doi.org/10.1364/OE.18.009164
34.
34.S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martiınez, J. M. Escalante, and A. Makhoute, Phys. Rev. B 88, 205410 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.205410
35.
35.Y. Pennec, B. Djafari-Rouhani, C. Li, J. M. Escalante, A. Martinez, S. Benchabane, V. Laude, and N. Papanikolaou, AIP Adv. 1, 041901 (2011).
http://dx.doi.org/10.1063/1.3675799
36.
36.M. Oudich, S. El-Jallal, Y. Pennec, B. Djafari-Rouhani, J. Gomis-Bresco, D. Navarro-Urrios, C. M. Sotomayor Torres, A. Martiınez, and A. Makhoute, Phys. Rev. B 89, 245122 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245122
37.
37.J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. Sotomayor Torres, Nature Communications 5, 4452 (2014).
http://dx.doi.org/10.1038/ncomms5452
38.
38.D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, M. Oudich, A. Pitanti, N. Capuj, A. Tredicucci, F. Alzina, A. Griol, Y. Pennec, B. Djafari-Rouhani, A. Martínez, and C. M. Sotomayor Torres, AIP Adv. (2014), accepted for publication.
39.
39.A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, Appl. Phys. Lett. 97, 181106 (2010).
http://dx.doi.org/10.1063/1.3507288
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903226
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903226
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903226
2014-12-01
2016-09-30

Abstract

Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903226.html;jsessionid=-ZmekHLUhbuQWIzS7Ve9JHiJ.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903226&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903226&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903226'
Right1,Right2,Right3,