Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. M. Rytov, Sov. Phys. Acoustics 2, 6880 (1956).
2.For a review, see, E. H. El Boudouti, B. Djafari Rouhani, A. Akjouj, and L. Dobrzynski, Surf. Sci. Rep. 64, 471 (2009).
3.M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
4.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
5.E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
6.J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University Press, USA, 1995).
7.For a recent review, see, Y. Pennec, J. Vasseur, B. Djafari Rouhani, L. Dobrzynski, and P. A. Deymier, Surf. Sci. Rep. 65, 229 (2010).
8.Acoustic Metamaterials and Phononic Crystals, edited by P. A. Deymier (Springer, Berlin Heidelberg, 2013).
9.M. Maldovan, Nature 503, 209 (2013).
10.N. D. Lanzillotti-Kimura, A. Lemaitre, A. Fainstein, B. Jusserand, and B. Perrin, Phys. Rev. B 84, 115453 (2011);
10.A. Fainstein, N. D. Lanzillotti-Kimura, B. Jusserand, and B. Perrin, Phys. Rev. Lett. 110, 037403 (2013).
11.I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari Rouhani, B. Bonello, and V. Laude, Phys. Rev.B 82, 174303 (2010).
12.M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature 462, 78 (2009).
13.M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, Opt. Express 17, 20078 (2009).
14.J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, Appl. Phys. Lett. 101, 081115 (2012).
15.A. H. Safavi-Naeini and O. Painter, Opt. Express 18, 14926 (2010).
16.Amir H. Safavi-Naeini, Jeff T. Hill, Seán Meenehan, Jasper Chan, Simon Gröblacher, and Oskar Painter, Phys. Rev. Lett. 112, 153603 (2014).
17.E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, and T. J. Kippenberg, Phys. Rev. Lett. 106, 203902 (2011).
18.D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, Nature Photon. 5, 605 (2011).
19.P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, Phys. Rev. X 2, 011008 (2012).
20.Fu-Li Hsiao, Cheng-Yi Hsieh, Hao-Yu Hsieh, and Chien-Chang Chiu, Appl. Phys. Lett. 100, 171103 (2012).
21.Jean-Charles Beugnot and Vincent Laude, Phys. Rev. B 86, 224304 (2012).
22.Tzy-Rong Lin, Chiang-Hsin Lin, and Jin-Chen Hsu, J. Appl. Phys. 113, 053508 (2013).
23.Yan Pennec, Vincent Laude, Nikos Papanikolaou, Bahram Djafari-Rouhani, Mourad Oudich, Said El Jallal, Jean Charles Beugnot, Jose M. Escalante, and Alejandro Martínez, “Modeling light-sound interaction in nanoscale cavities and waveguides,” Nanophotonics 3 (September 2014).
24.Q. Rolland, M. Oudich, S. El-Jallal, S. Dupont, Y. Pennec, J. Gazalet, J. C. Kastelik, G. Lévêque, and B. Djafari-Rouhani, Appl. Phys. Lett. 101, 061109 (2012).
25.D. Royer and E. Dieulesaint, Elastic Waves in Solids II: Generation, Acousto-optic Interaction, Applications (Springer, 1999).
26.S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, Phys. Rev. E 65, 066611 (2002).
27.P. Renosi and J. Sapriel, Appl. Phys. Lett. 64, 2794 (1994).
28.M. Maldovan and E. L. Thomas, Appl. Phys. B 83, 595 (2006);
28. M. Maldovan and E. L. Thomas, Appl. Phys. Lett. 88, 251907 (2006).
29.D. Bria, M. B. Assouar, M. Oudich, Y. Pennec, J. Vasseur, and B. Djafari Rouhani, J. Appl. Phys. 109, 014507 (2011).
30.S. Sadat-Saleh, S. Benchabane, F. I. Baida, M. P. Bernal, and V. Laude, J. Appl. Phys. 106, 074912 (2009).
31.S. Eljallal, M. Oudich, Y. Pennec, B. DjafariRouhani, A. Makhoute, Q. Rolland, S. Dupont, and J. Gazalet, J. Phys.: Condensed Matter 26, 015005 (2014).
32.Y. Pennec, B. Djafari-Rouhani, E. H. El Boudouti, C. Li, Y. El Hassouani, J. O. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, and A. Martinez, Opt. Express 18, 14301 (2010).
33.S. Mohammadi, A. A. Eftekhar, A. Khelif, and A. Adibi, Opt. Express 18, 9164 (2010).
34.S. El-Jallal, M. Oudich, Y. Pennec, B. Djafari-Rouhani, V. Laude, J. C. Beugnot, A. Martiınez, J. M. Escalante, and A. Makhoute, Phys. Rev. B 88, 205410 (2013).
35.Y. Pennec, B. Djafari-Rouhani, C. Li, J. M. Escalante, A. Martinez, S. Benchabane, V. Laude, and N. Papanikolaou, AIP Adv. 1, 041901 (2011).
36.M. Oudich, S. El-Jallal, Y. Pennec, B. Djafari-Rouhani, J. Gomis-Bresco, D. Navarro-Urrios, C. M. Sotomayor Torres, A. Martiınez, and A. Makhoute, Phys. Rev. B 89, 245122 (2014).
37.J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. Sotomayor Torres, Nature Communications 5, 4452 (2014).
38.D. Navarro-Urrios, J. Gomis-Bresco, S. El-Jallal, M. Oudich, A. Pitanti, N. Capuj, A. Tredicucci, F. Alzina, A. Griol, Y. Pennec, B. Djafari-Rouhani, A. Martínez, and C. M. Sotomayor Torres, AIP Adv. (2014), accepted for publication.
39.A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O. Painter, Appl. Phys. Lett. 97, 181106 (2010).

Data & Media loading...


Article metrics loading...



Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd