Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903227
1.
1.R Butte et al., J. Phys. D: Appl. Phys. 40, 6328 (2007).
http://dx.doi.org/10.1088/0022-3727/40/20/S16
2.
2.A. Castiglia, E. Feltin, G. Cosendey, A. Altoukhov, J.-F. Carlin, R. Bute, and N. Grandjean, Appl. Phys. Lett. 94, 193506 (2009).
http://dx.doi.org/10.1063/1.3138136
3.
3.J. Kuzmik, Semicond. Sci. Technol. 17, 540 (2002).
http://dx.doi.org/10.1088/0268-1242/17/6/307
4.
4.S. Choi, H. J. Kim, Z. Lochner, Y. Zhang, Y. C. Lee, S. C. Shen, J. H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 96, 243506 (2010).
http://dx.doi.org/10.1063/1.3446891
5.
5.M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, and Grandjean, Appl. Phys. Lett. 89, 062106 (2006).
http://dx.doi.org/10.1063/1.2335390
6.
6.Z. Dridi, B. Bouhafs, and P. Ruterana, Semicond. Sci. and Technol. 18, 850 (2003).
http://dx.doi.org/10.1088/0268-1242/18/9/307
7.
7.B. P. Burton, A. van de Walle, and U. Kattner, J. Appl. Phys. 100, 113528 (2006).
http://dx.doi.org/10.1063/1.2372309
8.
8.M. D. McCluskey, L. T. Romano, B. S. Krusor, D. P. Bour, and N. M. Johnson, Appl. Phys. Lett. 72, 1730 (1998).
http://dx.doi.org/10.1063/1.121166
9.
9.A. Redondo-Cubero, K. Lorenz, R. Gago, N. Franco, M-A di Forte Poisson, E. Alves, and E. Munoz, J. Phys. D: Appl. Phys. 43, 055406 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055406
10.
10.P. Ruterana, G. Nouet, W. Van der Stricht, I. Moerman, and L. Considine, Appl. Phys. Lett. 72, 1742 (1998).
http://dx.doi.org/10.1063/1.121170
11.
11.D. Korakakis, K. F. Ludwig, Jr., and T. D. Moustakas, Appl. Phys. Lett. 71, 72 (1997).
http://dx.doi.org/10.1063/1.119916
12.
12.P. Ruterana, G. de Saint Jores, S. Laugt, and F. Omnes, Appl. Phys. Lett. 78, 344 (2001).
http://dx.doi.org/10.1063/1.1340867
13.
13.Z. Gacevic, S. Fernandez-Garrido, J. M. Rebled, S. Estrade, F. Peiro, and E. Calleja, Appl. Phys. Lett. 99, 031103 (2011).
http://dx.doi.org/10.1063/1.3614434
14.
14.P. Ruterana, S. Kret, A. Vivet, G. Maciejewski, and P. Dluzewski, J. Appl. Phys. 91, 8979 (2002).
http://dx.doi.org/10.1063/1.1473666
15.
15.G. Perillat-Merceroz, G. Cosendey, J. F. Carlin, R. Butte, and N. Grandjean, J. Appl. Phys. 113, 063506 (2013).
http://dx.doi.org/10.1063/1.4790424
16.
16.V. Potin, P. Vermaut, P. Ruterana, and G. Nouet, J. Electronic Materials 27, 266 (1998).
http://dx.doi.org/10.1007/s11664-998-0398-3
17.
17.P. Vermaut, G. Nouet, and P. Ruterana, Appl. Phys. Lett. 74, 694 (1999).
http://dx.doi.org/10.1063/1.122990
18.
18.V. Potin, G. Nouet, and P. Ruterana, Appl. Phys. Lett. 74, 947 (1999).
http://dx.doi.org/10.1063/1.123418
19.
19.Q. Y. Wei, T. Li, Y. Huang, J. Y. Huang, Z. T. Chen, T. Egawa, and F. A. Ponce, Appl. Phys. lett 100, 092101 (2012).
http://dx.doi.org/10.1063/1.3690890
20.
20.A. Minj, D. Cavalcoli, and A. Cavallini, J. Phys.: Conf. Ser. 326, 012011 (2011).
http://dx.doi.org/10.1088/1742-6596/326/1/012011
21.
21.M. Hiroki et al., J. Cryst. Growth 382, 36 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2013.07.034
22.
22.J. J. Zhu et al., J. Cryst. Growth 348, 25 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.03.035
23.
23.J. Kim et al., J. Cryst. Growth 388, 143 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.09.046
24.
24.M. D. Smith et al., J. Mater. Chem. C 2, 5787 (2014).
http://dx.doi.org/10.1039/c4tc00480a
25.
25.J. H. Leach et al., J. Appl. Phys. 107, 083706 (2010).
http://dx.doi.org/10.1063/1.3330627
26.
26.N. Ketteniss et al., Semicond. Sci. Technol. 25, 075013 (2010).
http://dx.doi.org/10.1088/0268-1242/25/7/075013
27.
27.P. Vermaut, P. Ruterana, G. Nouet, and H. Morkoç, Inst. Phys. Conf. Ser. 146, 289 (1995).
28.
28.P. Ruterana and G. Nouet, Phys. Stat. Sol. B 227, 177 (2001).
http://dx.doi.org/10.1002/1521-3951(200109)227:1<177::AID-PSSB177>3.0.CO;2-7
29.
29.M. Mayer, AIP Conf. Proc. 474, 541 (1999).
http://dx.doi.org/10.1063/1.59188
30.
30.A. Vilalta-Clemente et al., Phys Status Solidi A 207, 1105 (2010).
http://dx.doi.org/10.1002/pssa.200983119
31.
31.M. Khoury et al., Semicond. Sci. Technol. 28, 035006 (2013).
http://dx.doi.org/10.1088/0268-1242/28/3/035006
32.
32.D. C. Joy, D. E. Newbury, and D. L. Davidson, J. Appl. Phys. 53, 81 (1982).
http://dx.doi.org/10.1063/1.331668
33.
33.C. Trager-Cowan et al., Phy. Rev. B 75, 085301 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085301
34.
34.G. Naresh-Kumar et al., Phys. Stat. Sol. A 209, 424 (2012).
http://dx.doi.org/10.1002/pssa.201100416
35.
35.G. Naresh- Kumar et al., Phys. Rev. Lett. 108, 135503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.135503
36.
36.K. Lorenz, N. Franco, E. Alves, I. M. Watson, R. W. Martin, and K. P. O’Donnell, Phys. Rev. Lett. 97, 085501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.085501
37.
37.A. Redondo-Cubero et al., J. Phys. D: Appl. Phys. 43, 055406 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055406
38.
38.K. Pantzas et al., Nanotechnology 23, 455707 (2012).
http://dx.doi.org/10.1088/0957-4484/23/45/455707
39.
39.S. Choi et al., J. Cryst. Growth 388, 137 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.10.006
40.
40.O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. of Appl. Phys. 85, 3222 (1999).
http://dx.doi.org/10.1063/1.369664
41.
41.D. K. Schroder, Semiconductor material and device characterization, 3rd. ed. (IEEE Press, Wiley, 2006).
42.
42.S. Pandey, B. Fraboni, D. Cavalcoli, A. Cavallini, T. Brazzini, and F. Calle, Appl. Phys. Lett. 100, 152116 (2012).
http://dx.doi.org/10.1063/1.4703938
43.
43.M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, N. Grandjean, V. Darakchieva, B. Monemar, M. Lorenz, and G. Ramm, J. Appl. Phys. 103, 093714 (2008).
http://dx.doi.org/10.1063/1.2917290
44.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903227
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903227
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903227
2014-12-01
2016-12-08

Abstract

We report on our multi–pronged approach to understand the structural and electrical properties of an InAl(Ga)N(33nm barrier)/Al(Ga)N(1nm interlayer)/GaN(3μm)/ AlN(100nm)/AlO high electron mobility transistor (HEMT) heterostructure grown by metal organic vapor phase epitaxy (MOVPE). In particular we reveal and discuss the role of unintentional Ga incorporation in the barrier and also in the interlayer. The observation of unintentional Ga incorporation by using energy dispersive X–ray spectroscopy analysis in a scanning transmission electron microscope is supported with results obtained for samples with a range of AlN interlayer thicknesses grown under both the showerhead as well as the horizontal type MOVPE reactors. Poisson–Schrödinger simulations show that for high Ga incorporation in the Al(Ga)N interlayer, an additional triangular well with very small depth may be exhibited in parallel to the main 2–DEG channel. The presence of this additional channel may cause parasitic conduction and severe issues in device characteristics and processing. Producing a HEMT structure with InAlGaN as the barrier and AlGaN as the interlayer with appropriate alloy composition may be a possible route to optimization, as it might be difficult to avoid Ga incorporation while continuously depositing the layers using the MOVPE growth method. Our present work shows the necessity of a multicharacterization approach to correlate structural and electrical properties to understand device structures and their performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903227.html;jsessionid=Aloq97kycUJ-H4pwYllAz5oh.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903227&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903227&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903227'
Right1,Right2,Right3,