Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903305
1.
1.L. E. Halliburton and M. P. Scripsick, Proc. SPIE 2379, 206476 (1995).
http://dx.doi.org/10.1117/12.206476
2.
2.M. P. Scripsick, D. N. LoIacono, J. Rottenberg, S. H. Goellner, L. E. Halliburton, and F. K. Hopkins, Appl. Phys. Lett. 66, 3428 (1995).
http://dx.doi.org/10.1063/1.113376
3.
3.D. J. Keeble, S. Singh, R. A. Mackie, M. Morozov, S. McGuire, and D. Damjanovic, Phys. Rev. B 76, 144109 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.144109
4.
4.R. A. Mackie, S. Singh, J. Laverock, S. B. Dugdale, and D. J. Keeble, Phys. Rev. B 79, 014102 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014102
5.
5.X. Q. Wang, S. T. Liu, D. Y. Ma, X. T. Zheng, G. Chen, F. J. Xu, N. Tang, B. Shen, P. Zhang, X. J. Cao, B. Y. Wang, S. Huang, K. J. Chen, S. Q. Zhou, and A. Yoshikawa, Appl. Phys. Lett. 101, 171905 (2012).
http://dx.doi.org/10.1063/1.4764013
6.
6.K. T. Stevens, L. E. Halliburton, M. Roth, N. Angert, and M. Tseitlin, J. Appl. Phys. 88, 6241 (2000).
http://dx.doi.org/10.1063/1.1315624
7.
7.M. Roth and M. Tseitli, J. Cryst. Growth 312, 10591064 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.10.019
8.
8.R. K. Rehberg and H. Leipner, Positron Annihilation in Semiconductors: Defect Studies (Springer-Verlag, Berlin, 1999).
9.
9.V. Ranki, J. Nissilä, and K. Saarinen, Phys. Rev. Lett. 88, 105506 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.105506
10.
10.F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Phys. Rev. Lett. 91, 205502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.205502
11.
11.A. Uedono, S. Ishibashi, T. Ohdaira, and R. Suzuki, J. Cryst. Growth 311, 3075 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.01.051
12.
12.K. Saarinen, T. Laine, S. Kuisma, J. Nissilä, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Leszczynski, I. Grzegory, and S. Porowski, Phys. Rev. Lett. 79, 3030 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.3030
13.
13.A. Alexandrovski, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D-13 (2009).
http://dx.doi.org/10.1117/12.814813
14.
14.P. Hautojärvi, P. Moser, M. Stucky, C. Corbel, and F. Plazaola, Appl. Phys. Lett. 48, 809 (1986).
http://dx.doi.org/10.1063/1.96677
15.
15.D. J. Keeble, R. A. Mackie, W. Egger, B. Löwe, P. Pikart, C. Hugenschmidt, and T. J. Jackson, Phys. Rev. B 81, 064102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.064102
16.
16.P. Mascher, D. Kerr, and S. Dannefaer, J. Cryst. Growth 85, 295 (1987).
http://dx.doi.org/10.1016/0022-0248(87)90238-7
17.
17.M.E. Hagerman, V.L. Kozhevnikov, and K.R. Poeppelmeie, Chem.Mater. 5, 12111215 (1993).
http://dx.doi.org/10.1021/cm00033a005
18.
18.P.A. Morris, A. Ferretti, J.D. Bierlein, and G.M. Loiacono, J. Cryst. Growth 109, 367375 (1991).
http://dx.doi.org/10.1016/0022-0248(91)90205-J
19.
19.K. Saarinen, T. Laine, K. Skog, J. Mäkinen, P. Hautojärvi, K. Rakennus, P. Uusimaa, A. Salokatve, and M. Pessa, Phys. Rev. Lett. 77, 3407 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3407
20.
20.F. Tuomisto, Proc. of SPIE 6473, 647312 (2007).
http://dx.doi.org/10.1117/12.697892
21.
21.F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.085502
22.
22.D. W. Hamby, D. A. Lucca, and M. J. Klopfstein, J. Appl. Phys. 97, 043504 (2005).
http://dx.doi.org/10.1063/1.1840102
23.
23.A. Uedono, T. Koida, A. Tsukazaki, M. Kawasaki, Z. Q. Chen, S. F. Chichibu, and H. Koinuma, J. Appl. Phys. 93, 2481 (2003).
http://dx.doi.org/10.1063/1.1539915
24.
24.N. Djourelov, C. He, T. Suzuki, V. P. Shantarovich, Y. Ito, K. Kondo, and Y. Ito, Radiat Phys Chem 68, 689 (2003).
http://dx.doi.org/10.1016/S0969-806X(03)00442-0
25.
25.V. K. Yanovskii and V. I. Voronkova, Phys.Stat.Sol.(a) 93, 665 (1986).
http://dx.doi.org/10.1002/pssa.2210930232
26.
26.S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, J. Phys. Soc. Jpn. 62, 183 (1993).
http://dx.doi.org/10.1143/JPSJ.62.183
27.
27.J. D. Bierlein and C. B. Arweiler, Appl. Phys. Lett. 49, 917 (1986).
http://dx.doi.org/10.1063/1.97483
28.
28.M. Tseitlin, E. Mojaev, and M. Roth, J. Cryst. Growth 312, 10551058 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.10.016
29.
29.A. Chen, J. F. Scott, Y. Zhi, H. Ledbetter, and J. L. Baptista, Phys. Rev. B 59, 6661 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.6661
30.
30.Y. Wu, M. J. Forbess, S. Seraji, S. J. Limmer, T. P. Chou, and G. Z. Cao, J. Appl. Phys. 89, 5649 (2001).
31.
31.P. F. Bordui, R. G. Norwood, and M. M. Fejer, Ferroelectrics 115, 7 (1991).
32.
32.N. Angert, M. Tseitlin, E. Yashchin, and M. Roth, Appl. Phys. Lett. 67, 1941 (1995).
http://dx.doi.org/10.1063/1.114575
33.
33.V. Mürk, V. Denks, A. Dudelzak, P. P. Proulx, and V. Vassiltsenko, Nucl Instrum Meth B 141, 472476 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00142-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903305
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903305
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903305
2014-12-02
2016-09-26

Abstract

For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903305.html;jsessionid=kI9DUJ0AoMAQ7K2lY_MYFtIG.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903305&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903305&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903305'
Right1,Right2,Right3,