Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
2.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
3.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
4.S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
5.P. W. Sutter, J.-I. Flege, and E. A. Sutter, Nature Mater. 7, 406 (2008).
6.J. Coraux, A. T. N‘Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).
7.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
8.X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 (2009).
9.J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, ACS Nano 5, 6916 (2011).
10.K. L. Chavez and D. W. Hess, J. Electrochem. Soc. 148, G640 (2001).
11.Z. Ni, Y. Wang, T. Yu, and Z. Shen, Nano. Res. 1, 273 (2008).
12.J. R. Rani, J. Oh, J.-e. Park, J. Lim, B. Park, K. Kim, S.-J. Kim, and S. Chan Jun, Nanoscale 5, 5620 (2013).
13.A. C. Ferrari, Solid State Commun. 143, 47 (2007).
14.L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
15.S. M. Kim, A. Hsu, Y. H. Lee, M. Dresselhaus, T. Palacios, K. K. Kim, and J. Kong, Nanotechnol. 24, 365602 (2013).
16.X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
17.A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
18.S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
19.G. V. Bianco, M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, Physical chemistry chemical physics : PCCP 16, 3632 (2014).
20.H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
21.S. J. Wang, Y. Geng, Q. Zheng, and J.-K. Kim, Carbon 48, 1815 (2010).
22.J. Geng, L. Liu, S. B. Yang, S.-C. Youn, D. W. Kim, J.-S. Lee, J.-K. Choi, and H.-T. Jung, The Journal of Physical Chemistry C 114, 14433 (2010).

Data & Media loading...


Article metrics loading...



Here, we report the synthesis of high quality monolayer graphene on the pre-treated copper (Cu) foil by chemical vapor deposition method. The pre-treatment process, which consists of pre-annealing in a hydrogen ambient, followed by diluted nitric acid etching of Cu foil, helps in removing impurities. These impurities include native copper oxide and rolling lines that act as a nucleation center for multilayer graphene. Raman mapping of our graphene grown on pre-treated Cu foil primarily consisted of ∼98% a monolayer graphene with as compared to 75 % for the graphene grown on untreated Cu foil. A high hydrogen flow rate during the pre-annealing process resulted in an increased I/I ratio of graphene up to 3.55. Uniform monolayer graphene was obtained with a I/I ratio and sheet resistance varying from 1.84 – 3.39 and 1110 – 1290 Ω/□, respectively.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd