Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903409
1.
1.M. Shayegan, T. Sajoto, M. Santos, and C. Silvestre, Appl. Phys. Lett. 53, 791 (1988).
http://dx.doi.org/10.1063/1.99834
2.
2.G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Nature 414, 619 (2001).
http://dx.doi.org/10.1038/414619a
3.
3.G. M. Gusev, A. A. Quivy, T. E. Lamas, J. R. Leite, A. K. Bakarov, A. I. Toropov, O. Estibals, and J. C. Portal, Phys. Rev. B 65, 205316 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.205316
4.
4.C. Ellenberger, B. Simovic, R. Leturcq, T. Ihn, S. E. Ulloa, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys. Rev. B 74, 195313 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.195313
5.
5.C. A. Duarte, G. M. Gusev, A. A. Quivy, T. E. Lamas, A. K. Bakarov, and J. C. Portal, Phys. Rev. B 76, 075346 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075346
6.
6.K. Inoue and T. Matsuno, Phys. Rev. B 47, 3771 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.3771
7.
7.G. Salis, P. Wirth, T. Heinzel, T. Ihn, K. Ensslin, K. Maranowski, and A. C. Gossard, Phys. Rev. B 59, R5304 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.R5304
8.
8.W. Duan, J. L. Zhu, B.-L. Gu, and J. Wu, Solid State Commun. 114, 101 (2000).
http://dx.doi.org/10.1016/S0038-1098(00)00010-7
9.
9.R. M. Seraide and G. Q. Hai, Braz. J. Phys. 32, 344 (2002).
http://dx.doi.org/10.1590/S0103-97332002000200026
10.
10.G. Yu, S. A. Studenikin, A. J. SpringThorpe, G. C. Aers, and D. G Austing, J. Appl. Phys. 97, 103703 (2005).
http://dx.doi.org/10.1063/1.1891277
11.
11.T. Sahu, S. Palo, and A. K. Panda, J. Appl. Phys. 113, 083704 (2013).
http://dx.doi.org/10.1063/1.4793317
12.
12.S. Palo, N. Sahoo, and T. Sahu, Physica E 64, 33 (2014).
http://dx.doi.org/10.1016/j.physe.2014.06.027
13.
13.P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 3rd ed. (John Wiley & Sons Ltd., Chichester, England, 2009).
14.
14.F. M. S. Lima, A. L. A. Fonseca, and O. A. C. Nunes, J. Appl. Phys. 92, 5296 (2002).
http://dx.doi.org/10.1063/1.1511276
15.
15.T. Sahu and K. A. Shore, J. Appl. Phys. 107, 113708 (2010).
http://dx.doi.org/10.1063/1.3391351
16.
16.T. Sahu, S. Palo, and N. Sahoo, Physica E 46, 155 (2012).
http://dx.doi.org/10.1016/j.physe.2012.08.019
17.
17.E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Appl. Phys. Lett. 89, 113508 (2006).
http://dx.doi.org/10.1063/1.2349835
18.
18.Danhong Huang, Godfrey Gumbs, and O. Roslyak, Phys. Rev. B 83, 115405 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115405
19.
19.N. Sahoo and T. Sahu, J. Appl. Phys. 116, 043703 (2014).
http://dx.doi.org/10.1063/1.4891260
20.
20.Ben Royall, Hagir Khalil, Simone Mazzucato, Ayse Erol, and Naci Balkan, Nanoscale Research Letters 9, 84 (2014).
http://dx.doi.org/10.1186/1556-276X-9-84
21.
21.T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.437
22.
22.Y. Ando and T. Itoh, J. Appl. Phys. 61, 1497 (1987).
http://dx.doi.org/10.1063/1.338082
23.
23.A. K. Saxena and A. D. Adams, J. Appl. Phys. 58, 2640 (1985).
http://dx.doi.org/10.1063/1.335895
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903409
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903409
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903409
2014-12-03
2016-12-04

Abstract

We show that oscillation of low temperature electron mobility can be obtained by applying an electric field along the growth direction of the asymmetrically barrier delta doped parabolic double quantum well structure. The drastic changes in the subband Fermi energies and distributions of subband wave functions as a function of yield nonmonotonic intra- and intersubband scattering rate matrix elements mediated by intersubband effects. The oscillatory enhancement of , which is attributed to the subband mobilities governed by the ionized impurity scattering, magnifies with increase in well width and decrease in height of the parabolic structure potential. The results can be utilized for nanoscale low temperature device applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903409.html;jsessionid=po8qNs8wKf8Y5DuHa4fbmI9I.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903409&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903409&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903409'
Right1,Right2,Right3,