Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903547
1.
1.L. E. Bell, Science 321, 1457 (2008).
http://dx.doi.org/10.1126/science.1158899
2.
2.C. B. Vining, Nat. Mater. 8, 83 (2009).
http://dx.doi.org/10.1038/nmat2361
3.
3.D. M. Rowe, in Thermoelectrics Handbook: from Macro to Nano, edited by D. M. Rowe (CRC Press, Boca Raton, FL, 2006).
4.
4.D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics (Reston, Reston, VA, 1983).
5.
5.M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
6.
6.G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
7.
7.F. J. DiSalvo, Science 285, 703 (1999).
http://dx.doi.org/10.1126/science.285.5428.703
8.
8.M. Manno, P. Wang, and A. Bar-Cohen, IEEE T. Compon. Pack. T. 4, 602 (2014).
http://dx.doi.org/10.1109/TCPMT.2013.2286740
9.
9.R. G. Yang, G. Chen, A. R. Kumar, G. J. Snyder, and J. P. Fleurial, Energy Convers. Manage. 46, 1407 (2005).
http://dx.doi.org/10.1016/j.enconman.2004.07.004
10.
10.G. J. Snyder, J. P. Fleurial, T. Caillat, R. G. Yang, and G. Chen, J. Appl. Phys. 92, 1564 (2002).
http://dx.doi.org/10.1063/1.1489713
11.
11.H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2010).
12.
12.D. M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995).
13.
13.A. F. Ioffe, Pat. USSR No. 126158 Byulleten’s izobretenii (Invention review) 4, 22 (1960).
14.
14.Z. Bian, H. Wang, Q. Zhou, and A. Shakouri, Phys. Rev. B 75, 245208 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245208
15.
15.Y. C. Gerstenmaier and G. Wachutka, Phys. Rev. E 86, 056703 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.056703
16.
16.J. Schilz, L. Helmers, W. E. Müller, and M. Niino, J. Appl. Phys. 83, 1150 (1998).
http://dx.doi.org/10.1063/1.366808
17.
17.B. Sherman, R. R. Heikes, and R. W. Ure, Jr., J. Appl. Phys. 31, 1 (1960).
http://dx.doi.org/10.1063/1.1735380
18.
18.L. N. Vikhor, J. Thermoelectricity 1, 7 (2005).
19.
19.G. D. Mahan, J. Appl. Phys 70, 4551 (1991).
http://dx.doi.org/10.1063/1.349091
20.
20.Z. Bian and A. Shakouri, Appl. Phys. Lett. 89, 212101 (2006).
http://dx.doi.org/10.1063/1.2396895
21.
21.N. Yang, N. B. Li, L. Wang, and B. W. Li, Phys. Rev. B 76, 020301(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.76.020301
22.
22.C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).
http://dx.doi.org/10.1126/science.1132898
23.
23.M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.094302
24.
24.B. W. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.184301
25.
25.N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. W. Li, Rev. Mod. Phys. 84, 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
26.
26.B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Science 320, 634 (2008).
http://dx.doi.org/10.1126/science.1156446
27.
27.See supplementary material for details at http://dx.doi.org/10.1063/1.4903547 for the thermoelectric performance with power law and exponential spatial-dependent thermal conductivities; linear and power law temperature-dependent thermal conductivities.[Supplementary Material]
28.
28.S. Lepri and G. Casati, Phys. Rev. Lett. 106, 164101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.164101
29.
29.E. Bozorg-Grayeli, A. Sood, M. Asheghi, V. Gambin, R. Sandhu, T. I. Feygelson, B. B. Pate, K. Hobart, and K. E. Goodson, Appl. Phys. Lett. 102, 111907 (2013).
http://dx.doi.org/10.1063/1.4796168
30.
30.D. Sawaki, W. Kobayashi, Y. Moritomo, and I. Terasaki, Appl. Phys. Lett. 98, 081915 (2011).
http://dx.doi.org/10.1063/1.3559615
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903547
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903547
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903547
2014-12-04
2016-09-26

Abstract

We theoretically investigate the enhancement of thermoelectric cooling performance in thermoelectric refrigerators made of materials with inhomogeneous thermal conductivity, beyond the usual practice of enhancing thermoelectric figure of merit (ZT) of materials. The dissipation of the Joule heat in such thermoelectric refrigerators is asymmetric which can give rise to better thermoelectric cooling performance. Although the thermoelectric figure of merit and the coefficient-of-performance are slightly enhanced, both the maximum cooling power and the maximum cooling temperature difference can be enhanced significantly. This finding can be used to increase the heat absorption at the cold end. We further find that the asymmetric dissipation of Joule heat leads to thermal rectification.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903547.html;jsessionid=s4Iy3LX5cVqR0hjrEaaL-pTm.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903547&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903547&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903547'
Right1,Right2,Right3,