Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Jayant Baliga, Advanced Power MOSFET Concepts (Springer, New York, 2010).
2., SEMI Documents 5307 (2011).
3.F. Soldera, G. Burdiles, U. Schmid, H. Seidel, and F. Mücklich, Appl. Surf. Sci. 254, 2150 (2008).
4.R. Scala, M. Porrini, and G. Borionetti, Cryst. Res. Technol. 46, 749 (2011).
5.C. L. Li, Y. J. Shen, D. Yang, X. Y. Ma, X. G. Yu, and D. L. Que, Chinese J. Rare Metals 127, 357 (2003).
6.T. Taishi, X. M. Huang, M. Kubota, T. Kajigaya, T. Fukami, and K. Hoshikawa, Mat. Sci. Eng. B 72, 169 (2000).
7.H. D. Chiou, J. Electrochem. Soc. 147, 345 (2000).
8.Y. H. Zeng, X. Y. Ma, J. H. Chen, W. J. Song, W. Y. Wang, L. F. Gong, D. X. Tian, and D. Yang, J. Appl. Phys. 111, 033520 (2012).
9.S. Zhou, X. D. Pi, Z. Y. Ni, Q. B. Luan, Y. Y. Jiang, C. H. Jin, T. Nozaki, and D. Yang, Part. Part. Syst. Charact. (2014).
10.R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M. S. Brandt, and M. Stutzmann, Phys. Stat. Sol. (RRL) 1, 262 (2007).
11.R. Khelifi, D. Mathiot, R. Gupta, D. Muller, M. Roussel, and S. Duguay, Appl. Phys. Lett. 102, 013116 (2013).
12.X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
13.M. Meseth, P. Ziolkowski, G. Schierning, R. Theissmann, N. Petermann, H. Wiggers, N. Benson, and R. Schmechel, Scripta Mater. 67, 265 (2012).
14.Uwe Kortshagen, J. Phys. D: Appl. Phys. 42, 113001 (2009).
15.B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Prentice Hall, Upper Saddle River, 2001).
16.M. M. Mandurah, K. C. Saraswat, C. Robert Helms, and T. I. Kamins, J. Appl. Phys. 51, 5755 (1980).
17.R. W. Olesinski and G. J. Abbaschian, Bull. Alloy Phase Diagrams 5, 478 (1984).
18.R. W. Olesinski, N. Kanani, and G. J. Abbaschian, Bull. Alloy Phase Diagrams 6, 130 (1985).
19.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).

Data & Media loading...


Article metrics loading...



Technologically important low-resistivity bulk Si has been usually produced by the traditional Czochralski growth method. We now explore a novel method to obtain low-resistivity bulk Si by hot-pressing B- and P-hyperdoped Si nanocrystals (NCs). In this work bulk Si with the resistivity as low as ∼ 0.8 (40) mΩ•cm has been produced by hot pressing P (B)-hyperdoped Si NCs. The dopant type is found to make a difference for the sintering of Si NCs during the hot pressing. Bulk Si hot-pressed from P-hyperdoped Si NCs is more compact than that hot-pressed from B-hyperdoped Si NCs when the hot-pressing temperature is the same. This leads to the fact that P is more effectively activated to produce free carriers than B in the hot-pressed bulk Si. Compared with the dopant concentration, the hot-pressing temperature more significantly affects the structural and electrical properties of hot-pressed bulk Si. With the increase of the hot-pressing temperature the density of hot-pressed bulk Si increases. The highest carrier concentration (lowest resistivity) of bulk Si hot-pressed from B- or P-hyperdoped Si NCs is obtained at the highest hot-pressing temperature of 1050 °C. The mobility of carriers in the hot-pressed bulk Si is low (≤  ∼ 30 cm-2V-1s-1) mainly due to the scattering of carriers induced by structural defects such as pores.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd