Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903767
1.
1.J. N. Zemel, J. D. Jensen, and R. B. Schoolar, Phys. Rev. 140, A330 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A330
2.
2.Peter Stchur, Danielle Cleveland, Jack Zhou, and Robert G. Michel, Appl. Spect. Rev. 37, 383 (2002).
http://dx.doi.org/10.1081/ASR-120016293
3.
3.Z. J. Wang, S. C. Qu, X. B. Zeng, C. S. Zhang, M. J. Shi, F. R. Tan, Z. G. Wang, J. P. Liu, Y. B. Hou, F. Teng, and Z. H. Feng, Polymer 49, 4647 (2008).
http://dx.doi.org/10.1016/j.polymer.2008.08.041
4.
4.G. A. Samara and H. G. Drickanmer, J. Chem. Phys. 37, 1159 (1962).
http://dx.doi.org/10.1063/1.1733240
5.
5.A. N. Mariano and K. L. Chopra, Appl. Phys. 10, 282 (1967).
6.
6.T. Chattopadhyay, A. Werner, and H. G. Schnering, Mat. Res. Soc. Symp. Proc. 22, 93 (1984).
7.
7.T. Chattopadhyay, H. G. Schnering, W. A. Grosshans, and W. B. Holzapfel, Physica 139 &140 B, 356 (1986).
8.
8.J. Maclean, P. D. Hatton, R. O. Piltz, J. Crain, and R. J. Cernik, Nucl. Instr. And Meth. In Phys. Res. B 97, 354 (1995).
http://dx.doi.org/10.1016/0168-583X(95)00277-4
9.
9.K. Knorr, L. Ehm, M. Hytha, B. Winkler, and W. Depmeier, Eur. Phys. J. B 31, 297 (2003).
http://dx.doi.org/10.1140/epjb/e2003-00034-6
10.
10.D. W. Fan, W. G. Zhou, S. Y. Wei, J. Liu, Y. C. Li, S. Jiang, and H. S. Xie, Chin. Phys. Lett. 27, 086401 (2010).
http://dx.doi.org/10.1088/0256-307X/27/8/086401
11.
11.A. Grzechnik and K. Friese, J. Phys.: Condens. Matter 22, 095402 (2010).
12.
12.S. M. Wang, J. Z. Zhang, Y. Zhang, A. Alvarado, J. Attapattu, D. W. He, L. P. Wang, C. F. Chen, and Y. S. Zhao, Inorg. Chem. 52, 8638 (2013).
http://dx.doi.org/10.1021/ic400801s
13.
13.S. H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.13605
14.
14.M. Lach-hab, D. A. Papaconstantopoulos, and M. J. Mehl, J. Phys. Chem. Sol. 63, 833 (2002).
http://dx.doi.org/10.1016/S0022-3697(01)00237-2
15.
15.D. Rached, M. Rabah, N. Benkhettou, M. Driz, and B. Soudini, Physica B 337, 394 (2003).
http://dx.doi.org/10.1016/S0921-4526(03)00443-5
16.
16.R. Ahuja, Phys. Stat. Sol. (b) 235, 341 (2003).
http://dx.doi.org/10.1002/pssb.200301583
17.
17.Y. Zhang, X. Z. Ke, C. F. Chen, J. Yang, and P. R. C. Kent, Phys. Rev. B 80, 024304 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.024304
18.
18.Y. Bencherif, A. BouKra, A. Zaoui, and M. Ferhat, Mater. Chem. Phys. 126, 707 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2010.12.056
19.
19.D. Zagorac, K. Doll, J. C. Schön, and M. Jansen, Phyc. Rev. B 84, 045206 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.045206
20.
20.P. Bhambhani, N. Munjal, G. Sharma, V. Vyas, and B. K. Sharma, J. Phys.: Conference Series 377, 012068 (2012).
21.
21.F. Demeray and S. Berber, Phys. Scr. 88, 015603 (2013).
http://dx.doi.org/10.1088/0031-8949/88/01/015603
22.
22.H. K. Mao, J. Xu, and P. M. Bell, J Geophys Res-Solid 91, 4673 (1986).
http://dx.doi.org/10.1029/JB091iB05p04673
23.
23.J. Hammersley, Fit2d User Manual 1996, (Grenoble: ESRF).
24.
24.B. H. J. Toby, Appl. Crystallogr. 34, 210 (2001).
http://dx.doi.org/10.1107/S0021889801002242
25.
25.N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
26.
26.J. P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
27.
27.L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (LDA) (1971).
http://dx.doi.org/10.1088/0022-3719/4/14/022
28.
28.Y. C. Li, X. N. Zhang, H. Li, X. D. Li, C. L. Lin, W. S. Xiao, and J. Liu, J. Appl. Phys. 113, 083509 (2013).
http://dx.doi.org/10.1063/1.4792233
29.
29.Y. C. Li, C. L. Lin, G. Li, J. Xu, X. D. Li, and J. Liu, J. Appl. Phys. 115, 223507 (2014).
http://dx.doi.org/10.1063/1.4882298
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903767
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903767
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903767
2014-12-05
2016-09-26

Abstract

The structural transitions of PbS were investigated at pressures up to 50 GPa using synchrotron powder and single crystal X-ray diffraction (XRD) methods in diamond anvil cells. We found two intermediate phases between the B1 phase under atmospheric pressure and the B2 phase at 21.1 GPa, which is different to previous reports. The structures of these two intermediate phases were indexed as B27 and B33, respectively. Their structural parameters were investigated using density functional theory (DFT) calculations. Our results provide a new insight into understanding the transition pathway between the B1 and B2 phases in PbS.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903767.html;jsessionid=Wjnt2gc3eRnfPKr0Uc_yyexN.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903767&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903767&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903767'
Right1,Right2,Right3,