Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4903772
1.
1.J. F. Scott, Science 307, 954959 (2007).
http://dx.doi.org/10.1126/science.1129564
2.
2.Y. A. Park, K. D. Sung, C. J. Won, J. H. Jung, and N. Hur, J. Appl. Phys. 114(9), 094101 (2013).
http://dx.doi.org/10.1063/1.4819800
3.
3.C. Wang, K.-j. Jin, Z.-t. Xu, L. Wang, C. Ge, H.-b. Lu, H.-z. Guo, M. He, and G.-z. Yang, Appl. Phys. Lett. 98(19), 192901 (2011).
http://dx.doi.org/10.1063/1.3589814
4.
4.P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf, and S. V. Kalinin, Science 324(5933), 14211425 (2009).
http://dx.doi.org/10.1126/science.1171200
5.
5.R. Guo, L. You, Y. Zhou, Z. Shiuh Lim, X. Zou, L. Chen, R. Ramesh, and J. Wang, Nat. Commun. 4, 1990 (2013).
http://dx.doi.org/10.1038/ncommns2990
6.
6.T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, Science 324(5923), 6366 (2009).
http://dx.doi.org/10.1126/science.1168636
7.
7.C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Nat. Mater. 8, 485493 (2009).
http://dx.doi.org/10.1038/nmat2432
8.
8.A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C. S. Hwang, T. A. Tang, H. B. Lu, and G. Z. Yang, Adv. Mater. 23(10), 12771281 (2011).
http://dx.doi.org/10.1002/adma.201004317
9.
9.D. Lee, S. H. Baek, T. H. Kim, J. G. Yoon, C. M. Folkman, C. B. Eom, and T. W. Noh, Phys. Rev. B 84(12), 125305 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125305
10.
10.S. Hong, T. Choi, J. H. Jeon, Y. Kim, H. Lee, H. Y. Joo, I. Hwang, J. S. Kim, S. O. Kang, S. V. Kalinin, and B. H. Park, Adv. Mater. 25(16), 23392343 (2013).
http://dx.doi.org/10.1002/adma.201204839
11.
11.C. Ge, K.-J. Jin, C. Wang, H.-B. Lu, C. Wang, and G.-Z. Yang, Appl. Phys. Lett. 99(6), 063509 (2011).
http://dx.doi.org/10.1063/1.3624849
12.
12.L. M. Hrib, A. G. Boni, C. Chirila, I. Pasuk, I. Pintilie, and L. Pintilie, J. Appl. Phys. 113(21), 214108 (2013).
http://dx.doi.org/10.1063/1.4808464
13.
13.Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, J. Appl. Phys. 84(9), 5005 (1998).
http://dx.doi.org/10.1063/1.368747
14.
14.I. Chilibon and J. N. Marat-Mendes, J. Sol-Gel Sci. Techn. 64(3), 571611 (2012).
http://dx.doi.org/10.1007/s10971-012-2891-7
15.
15.D. S. L. Pontes, L. Gracia, F. M. Pontes, A. Beltrán, J. Andrés, and E. Longo, J. Mater. Chem. 22(14), 6587 (2012).
http://dx.doi.org/10.1039/c2jm15150b
16.
16.N. Sama, R. Herdier, D. Jenkins, C. Soyer, D. Remiens, M. Detalle, and R. Bouregba, J. Cryst. Growth 310(14), 32993302 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2008.04.025
17.
17.H. Miyazaki, Y. Miwa, and H. Suzuki, Mater. Sci. Eng., B 136(2-3), 203206 (2007).
http://dx.doi.org/10.1016/j.mseb.2006.09.024
18.
18.G. L. Rhun, G. Poullain, R. Bouregba, and G. Leclerc, J. Eur. Ceram. Soc. 25(12), 22812284 (2005).
http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.046
19.
19.L. Jiankang and Y. Xi, Mater. Lett. 58(27-28), 34473450 (2004).
http://dx.doi.org/10.1016/j.matlet.2004.03.053
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.4903772 for detail switching current measurement and futher data of C-V curves.[Supplementary Material]
21.
21.L. Pintilie, V. Stancu, L. Trupina, and I. Pintilie, Phys. Rev. B 82(8), 085319 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085319
22.
22.Y. Yao, B. Zhang, L. Chen, Y. Yang, Z. Wang, H. N. Alshareef, and X. X. Zhang, J. Phys. D: Appl. Phys. 46(5), 055304 (2013).
http://dx.doi.org/10.1088/0022-3727/46/5/055304
23.
23.T. P.-c. Juan, S.-m. Chen, and J. Y.-m. Lee, J. Appl. Phys. 95(6)), 3120 (2004).
http://dx.doi.org/10.1063/1.1646441
24.
24.M. V. Raymond and D. M. Smyth, J. Phys. Chem. Solids 57(10), 15071511 (1996).
http://dx.doi.org/10.1016/0022-3697(96)00020-0
25.
25.L. Pintilie and M. Alexe, J. Appl. Phys. 98(12), 124103 (2005).
http://dx.doi.org/10.1063/1.2148622
26.
26.N. G. Apostol, L. E. Stoflea, G. A. Lungu, C. Chirila, L. Trupina, R. F. Negrea, C. Ghica, L. Pintilie, and C. M. Teodorescu, Appl. Surf. Sci. 273, 415425 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.02.056
27.
27.P. Juan, Y. Hu, F. Chiu, and J. Y. Lee, J. Appl. Phys. 98(4), 044103 (2005).
http://dx.doi.org/10.1063/1.2014935
28.
28.H. Lee, Y. S. Kang, S.-J. Cho, B. Xiao, H. Morkoç, T. D. Kang, G. S. Lee, J. Li, S.-H. Wei, P. G. Snyder, and J. T. Evans, J. Appl. Phys. 98(9), 094108 (2005).
http://dx.doi.org/10.1063/1.2128043
29.
29.L. Pintilie, I. Boerasu, M. J. M. Gomes, T. Zhao, R. Ramesh, and M. Alexe, J. Appl. Phys. 98(12), 124104 (2005).
http://dx.doi.org/10.1063/1.2148623
30.
30.J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S. Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C. H. Yang, J. C. Yang, Y. H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105(19), 197603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.197603
31.
31.E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, P. Maksymovych, and S. V. Kalinin, Phys. Rev. B 85(4), 045312 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045312
32.
32.R. K. Vasudevan, W. Wu, J. R. Guest, A. P. Baddorf, A. N. Morozovska, E. A. Eliseev, N. Balke, V. Nagarajan, P. Maksymovych, and S. V. Kalinin, Adv. Funct. Mater. 23(20), 25922616 (2013).
http://dx.doi.org/10.1002/adfm.201300085
33.
33.J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, Adv. Mater. 23(45), 53775382 (2011).
http://dx.doi.org/10.1002/adma.201102254
34.
34.S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, and J. L. Musfeldt, Appl. Phys. Lett. 92(9), 091905 (2008).
http://dx.doi.org/10.1063/1.2887908
35.
35.H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. W. Cheong, Adv. Mater. 23(30), 34033407 (2011).
http://dx.doi.org/10.1002/adma.201100805
36.
36.G. W. Pabst, L. W. Martin, Y.-H. Chu, and R. Ramesh, Appl. Phys. Lett. 90(7), 072902 (2007).
http://dx.doi.org/10.1063/1.2535663
37.
37.X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86(6), 062903 (2005).
http://dx.doi.org/10.1063/1.1862336
38.
38.H. Yang, M. Jain, N. A. Suvorova, H. Zhou, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, S. R. Foltyn, and Q. X. Jia, Appl. Phys. Lett. 91(7), 072911 (2007).
http://dx.doi.org/10.1063/1.2772666
39.
39.H. Hu and S. B. Krupanidhi, J. Mater. Res. 9(6), 14841498 (1994).
http://dx.doi.org/10.1557/JMR.1994.1484
40.
40.P. R. Emtage and W. Tantraporn, Phys. Rev. Lett. 8(7), 267268 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.267
41.
41.Z. Chen, L. He, F. Zhang, J. Jiang, J. Meng, B. Zhao, and A. Jiang, J. Appl. Phys. 113(18), 184106 (2013).
http://dx.doi.org/10.1063/1.4804144
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4903772
Loading
/content/aip/journal/adva/4/12/10.1063/1.4903772
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4903772
2014-12-05
2016-09-25

Abstract

Pb(ZrTi)O (PZT) thin film was fabricated on Pt/Ti/SiO/Si substrate by chemical solution deposition method. Our results show a very great switchable ferroelectric diode effect (SFDE) in Pt-PZT-Au structure, which is more obvious and controllable than that in other ferroelectric thin films. The electrical conduction exhibits high rectifying behavior after pre-poling and the polarity of ferroelectric diode can be switched by changing the orientation of polarization in ferroelectric thin film. Our results also indicate that the SFDE in PZT film is highly dependent on remanent polarization and temperature. With the increase of remanent polarization, the forward current of bistable rectifying behavior observably reduces. Therefore, our measurement indicated that the biggest rectification ratio can reach about 220, which is found in 250K after +10V poling. By analyzing the conduction data, it is found that the dominant conduction mechanism of the SFDE in this sample is due to the space-charge-limited bulk conduction (SCLC), and Schottky emission (SE) may play subordinate role in forward bias voltage. Our observation demonstrates that SFDE may be general characteristic in ferroelectrics as long as proper electrodes chosen.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4903772.html;jsessionid=h_qAYFXxMq4_9B2MVXQNZ7vg.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4903772&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4903772&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4903772'
Right1,Right2,Right3,