Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904024
1.
1.S. M. Kogan, Soviet Phys. Solid State 5(10), 2069 (1964).
2.
2.W. H. Ma and L. E. Cross, Appl. Phys. Lett. 81(18), 3440 (2002).
http://dx.doi.org/10.1063/1.1518559
3.
3.W. H. Ma and L. E. Cross, Appl. Phys. Lett. 78(19), 2920 (2001).
http://dx.doi.org/10.1063/1.1356444
4.
4.L. E. Cross, J. Mater. Sci. 41(1), 53 (2006).
http://dx.doi.org/10.1007/s10853-005-5916-6
5.
5.A. K. Tagantsev, Phys. Rev. B 34(8), 5883 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5883
6.
6.A. K. Tagantsev, Phase Transit 35(3-4), 119 (1991).
http://dx.doi.org/10.1080/01411599108213201
7.
7.W. B. Huang, K. Kim, S. J. Zhang, F. G. Yuan, and X. N. Jiang, Phys. Status Solidi-Rapid Res. Lett. 5(9), 350 (2011).
http://dx.doi.org/10.1002/pssr.201105326
8.
8.M. S. Majdoub, P. Sharma, and T. Cagin, Phys. Rev. B 77(12), 125424 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125424
9.
9.X. Jiang, W. Huang, and S. Zhang, Nano Energy 2(6), 1079 (2013).
http://dx.doi.org/10.1016/j.nanoen.2013.09.001
10.
10.D. Lee, A. Yoon, S. Y. Jang, J. G. Yoon, J. S. Chung, M. Kim, J. F. Scott, and T. W. Noh, Phys. Rev. Lett. 107(5), 057602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.057602
11.
11.G. Catalan, A. Lubk, A. Vlooswijk, E. Snoeck, C. Magen, A. Janssens, G. Rispens, G. Rijnders, D. Blank, and B. Noheda, Nature Materials 10(12), 963 (2011).
http://dx.doi.org/10.1038/nmat3141
12.
12.H. Lu, C.-W. Bark, D. Esque de los Ojos, J. Alcala, C. B. Eom, G. Catalan, and A. Gruverman, Science 336(6077), 59 (2012).
http://dx.doi.org/10.1126/science.1218693
13.
13.J. Y. Fu, W. Y. Zhu, N. Li, N. B. Smith, and L. E. Cross, Appl. Phys. Lett. 91(18), 182910 (2007).
http://dx.doi.org/10.1063/1.2800794
14.
14.J. Y. Fu, W. Y. Zhu, N. Li, and L. E. Cross, J. Appl. Phys. 100(2), 024112 (2006).
http://dx.doi.org/10.1063/1.2219990
15.
15.T. M. Shaw, Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, Appl. Phys. Lett. 75(14), 2129 (1999).
http://dx.doi.org/10.1063/1.124939
16.
16.X. Jiang, J. R. Yuan, A. Cheng, K. Snook, P. J. Cao, P. W. Rehrig, W. S. Hackenberger, G. Lavalelle, X. Geng, and T. R. Shrout, in 2006 IEEE Ultrasonics Symposium, Vols 1-5, Proceedings (IEEE, New York, 2006) pp. 922.
17.
17.J. R. Yuan, X. Jiang, C. Pei-Jie, A. Sadaka, R. Bautista, K. Snook, and P. W. Rehrig, Ultrasonics Symposium, 2006 (IEEE, 2006).
18.
18.L.-P. Wang, R. Wolf, Q. Zhou, S. Trolier-McKinstry, and R. Davis, MRS Proceedings (2000).
19.
19.S. U. Adikary and H. L. W. Chan, Thin Solid Films 424(1), 70 (2003).
http://dx.doi.org/10.1016/S0040-6090(02)00918-5
20.
20.T.-L. Ren, X.-N. Wang, J.-S. Liu, H.-J. Zhao, T.-Q. Shao, L.-T. Liu, and Z.-J. Li, J. Phys. D: Appl. Phys. 35(9), 923 (2002).
http://dx.doi.org/10.1088/0022-3727/35/9/314
21.
21.R. Zhang, C. Yang, A. Yu, B. Wang, H. Tang, H. Chen, and J. Zhang, Appl. Surf. Sci. 254(21), 6697 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.05.233
22.
22.T. Zhang, H. Huang, and R. Chen, Ferroelectrics 410(1), 137 (2010).
http://dx.doi.org/10.1080/00150193.2010.492740
23.
23.K. Zheng, J. Lu, and J. Chu, Jpn. J. Appl. Phys. 43(6S), 3934 (2004).
http://dx.doi.org/10.1143/JJAP.43.3934
24.
24.M. Roth, E. Mojaev, E. Dul’kin, P. Gemeiner, and B. Dkhil, Phys. Rev. Lett. 98(26), 265701 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.265701
25.
25.L. Shu, W. Huang, S. R. Kwon, Z. Wang, F. Li, X. Wei, S. Zhang, M. Lanagan, X. Yao, and X. Jiang, Appl. Phys. Lett. 104(23), 232902 (2014).
http://dx.doi.org/10.1063/1.4882060
26.
26.B. J. Chu, W. Y. Zhu, N. Li, and L. E. Cross, J. Appl. Phys. 106(10), 104109 (2009).
http://dx.doi.org/10.1063/1.3262495
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904024
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904024
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904024
2014-12-08
2016-09-25

Abstract

A fabrication method by combining precision mechanical dicing and wet etching was developed to prepare micro-pyramid structures based on (BaSr)TiO ceramics. The effective piezoelectric properties of flexoelectric pyramid structures in ten micrometers scale were investigated and measured through converse flexoelectric effect. The scaling effect of the flexoelectric response was demonstrated as the structure size shrinks down. The results do suggest the great potential of flexoelectric micro pyramids as an alternative to lead-free piezoelectric material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904024.html;jsessionid=Ba8dIzWAqxFLGS-PXeEpJuw2.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904024&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904024&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904024'
Right1,Right2,Right3,