Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. E. Dahl, S. G. Liu, and R. M. K. Carlson, Sci. 299, 96 (2003).
2.P. L. B. de Araujo, G. A. Mansoori, and E. S. de Araujo, Int. J. Oil Gas Coal Technol. 5, 316 (2012).
3.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).
4.F. Camacho-Alanis, L. Wu, G. Zangari, and N. Swami, J. Mater. Chem. 18, 5459 (2008).
5.S. Lodha and D. B. Janes, J. Appl. Phys. 100, 024503 (2006).
6.J. Nishizawa, P. Plotka, and T. Kurabayashi, IEEE Trans. Electron Devices 49, 1102 (2002).
7.NIST Computational chemistry comparison and benchmark database, release 15b, 2011. (accessed July 1, 2014).
8.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh PA, (2003).
9.Mudar A. Abdulsattar, Physica E 41, 1679 (2009).
10.Mudar Ahmed Abdulsattar and Ismail Salih Mohammed, Comput. Mater. Sci. 91, 11 (2014).
11.Hamsa Naji Nasir, Mudar A. Abdulsattar, and Hayder M. Abduljalil, Adv. Condens. Matter Phys. 2012, 348254 (2012).
12.A. Q. Zhou, C. S. O’Hern, and L. Regan, Biophys. J. 102, 2345 (2012).
13.N. N. Greenwood, Spectroscopic Properties of Inorganic and Organometallic Compounds (Royal Society of Chemistry, 1970).
14.C. Kittel, Introduction to Solid State Physics, eighth ed. (Wiley, 2005).
15.M. A Abdulsattar, Beilstein J. Nanotechnol. 4, 262 (2013).
16.M. A. Abdulsattar, Silicon 5, 229 (2013).
17.A. N. Rosli, H. Abu Kassim, and K. N. Shrivastava, Sains Malaysiana 42, 1811 (2013).
18.T. M. Willey, C. Bostedt, T. van Buuren, J. E. Dahl, S. G. Liu, R. M. K. Carlson, R. W. Meulenberg, E. J. Nelson, and L. J. Terminello, Phys. Rev. B 74, 205432 (2006).

Data & Media loading...


Article metrics loading...



Gallium arsenide diamondoids structural and vibrational properties are investigated using density functional theory at the PBE/6-31(d) level and basis including polarization functions. Variation of energy gap as these diamondoids increase in size is seen to follow confinement theory for diamondoids having nearly equiaxed dimensions. Density of energy states transforms from nearly single levels to band structure as we reach larger diamondoids. Bonds of surface hydrogen with As atoms are relatively localized and shorter than that bonded to Ga atoms. Ga-As bonds have a distribution range of values due to surface reconstruction and effect of bonding to hydrogen atoms. Experimental bulk Ga-As bond length (2.45 Å) is within this distribution range. Tetrahedral and dihedral angles approach values of bulk as we go to higher diamondoids. Optical-phonon energy of larger diamondoids stabilizes at 0.037 eV (297 cm-1) compared to experimental 0.035 eV (285.2 cm-1). Ga-As force constant reaches 1.7 mDyne/Å which is comparable to Ga-Ge force constant (1.74 mDyne/Å). Hydrogen related vibrations are nearly constant and serve as a fingerprint of GaAs diamondoids while Ga-As vibrations vary with size of diamondoids.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd