Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. M. Sigalas and E. N. Economou, “Elastic and acoustic band structure,” J. Sound Vib. 158, 377-382 (1992).
2.M. Sigalas and E. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Communications 86, 141 (1993).
3.M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 2022-2025 (1993).
4.J. O. Vasseur, P. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, “Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals,” Phys. Rev. Lett. 86(14), 30123015 (2001).
5.S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, “Focusing of sound in a 3D phononic crystal,” Phys. Rev. Lett. 93, 024301 (2004).
6.J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
7.M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen, and P. Sheng, “Negative-refraction imaging with two-dimensional phononic crystals,” Phys. Rev. B 72, 064306 (2005).
8.A. Sukhovich, L. Jing, and J. H. Page, “Negative refraction and focusing of ultrasound in two-dimensional phononic crystals,” Phys. Rev. B 77, 014301 (2008).
9.A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, “Experimental and Theoretical Evidence for Subwavelength Imaging in Phononic Crystals,” Phys. Rev. Lett. 102, 154301 (2009).
10.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett. 85, 341-343 (2004).
11.L. Feng, X. Liu, M. Lu, Y. Chen, Y. Chen, Y. Mao, J. Zi, Y. Zhu, S. Zhu, and N. Ming, “Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal,” Phys. Rev. Lett. 96, 014301 (2006).
12.J. Bucay, E. Roussel, J. O. Vasseur, P. A. Deymier, A.-C. Hladky-Hennion, Y. Pennec, K. Muralidharan, B. Djafari-Rouhani, and B. Dubus, “Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: Theoretical and experimental study,” Phys. Rev. B 79, 214305 (2009).
13.N. Swinteck, J.-F. Robillard, S. Bringuier, J. Bucay, K. Muralidaran, J. O. Vasseur, K. Runge, and P. A. Deymier, “Phase-controlling phononic crystal,” Appl. Phys. Lett. 98, 103508 (2011).
14.N. Swinteck, S. Bringuier, J.-F. Robillard, J.O. Vasseur, A. C. Hladky-Hennion, K. Runge, and P. A. Deymier, “Phase control in two-dimensional phononic crystals,” J. Appl. Phys. 110, 074507 (2011).
15.D. Richards and D. Pines, “Passive reduction of gear mesh vibration using a periodic drive shaft,” Journal of Vibration and Sound 264, 317342 (2003).
16.H. Policarpo, M. Neves, and A. Ribeiro, “Dynamical response of a multi-laminated periodic bar: Analytical, numerical and experimental study,” Shock and Vibration 17, 521-535 (2010).
17.M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites,” Journal of the Acoustical Society of America 101(3), 1256-1261 (1997).
18.M. Torres, F. Montero de Espinosa, D. Garcia-Pablos, and N. Garcia, “Sonic band gaps in finite elastic media: Surface states and localization phenomena in linear and point defects,” Physical Review Letters 82, 3054-3057 (1999).
19.M. Kafesaki, M. Sigalas, and N. Garcia, “Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials,” Physical Review Letters 85, 4044-4047 (2000).
20.A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, and P. A. Deymier, “Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials,” Physical Review B 68(2), 024302 (2003).
21.B. Yuan, B. Liang, J. Tao, X. Zou, and J. Cheng, “Broadband directional acoustic waveguide with high efficiency,” Applied Physics Letters 101, 043503 (2012).
22.L. Chen, C. Kuo, and Z. Ye, “Acoustic imaging and collimating by slabs of sonic crystals madefrom arrays of rigid cylinders in air,” Applied Physics Letters 85, 1072-1074 (2004).
23.J. Christensen, A. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. Garcia-Vida, “Collimation of sound assisted by acoustic surface waves,” Nature Physics 3, 851-852 (2007).
24.J. Shi, S. Lin, and T. Huang, “Wide-band acoustic collimating by phononic crystal composites,” Applied Physics Letters 92(11), 111901 (2008).
25.F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. Lopez, and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal,” Physical Review B 59(19), 12169-12172 (1999).
26.R. Sainidou and N. Stefanou, “Guided and quasiguided elastic waves in phononic crystal slabs,” Physical Review B 73, 184301 (2006).
27.J. Deymier, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec, and A.-C. Hladky-Hennion, “Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates,” Physical Review B 77, 085415 (2006).
28.B. Liang, X. Zou, B. Yuan, and J. Cheng, “Frequency-dependence of the acoustic rectifying efficiency of an acoustic diode model,” Applied Physics Letters 96, 233511 (2010).
29.B. Liang, X. S. Guo, J. Tu, Z. Cheng, and J. C. Cheng, “An acoustic rectifier,” Nature Materials 9, 989-992 (2010).
30.J. –F. Robillard, O. Bou Matar, J. O. Vasseur, P. A. Deymier, M. Stippinger, A. –C. Hladky-Hennion, Y. Pennec, and B. Djafari-Rouhani, “Tunable magnetoelastic phononic crystals,” Applied Physics Letters 95, 124104 (2009).
31.O. Bou Matar, J. F. Robillard, J. O. Vasseur, A. C. Hladky-Hennion, P. A. Deymier, P. Pernod, and V. Preobrazhensky, “Band gap tunability of magnetoelastic phononic crystal,” Journal of Applied Physics 111, 054901 (2012).
32.K. Tanaka and A. Odajima, “Configuration-coordinate model for photodarkening in amorphous As2S3,” J. Non-Cryst. Sol. 46, 259-268 (1981).
33.K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B: Condens. Matter 57, 5163-5167 (1998).
34.P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277, 1799-1802 (1997).
35.H. Hisakuni and K. Tanaka, “Optical microfabrication of chalcogenide glasses,” Science 270, 974-5 (1995).
36.J. Gump, I. Finckler, H. Xia, R. Sooryakumar, W. J. Bresser, and P. Boolchand, “Light-induced giant softening of network glasses observed near the mean-field rigidity transition,” Phys. Rev. Lett. 92, 245501 (2004).
37.A. Feltz, Amorphous Inorganic Materials and Glasses (VCH, 1993).
38.Z. U. Borisova, Glassy Semiconductors (Plenum Press, 1981).
39.E. Walker, D. Reyes, M. M. Rojas, A. Krokhin, Z. Wang, and A. Neogi, “Tunable ultrasonic phononic crystal controlled by infrared radiation,” Applied Physics Letters 105, 143503 (2014).
40.Y. Ito, S. Kashida, and K. Murase, “Elastic Constants of the Chalcogenide Glasses (GexSe1-x, AsySe1-y and Ge2/3z As1/3zSe1-z),” Solid State Communications 65(6), 449-452 (1988).
41.G. Mur, “The Modeling of Singularities in the Finite-Difference Approximation of the Time-Domain electromagnetic-field equations,” IEEE Transactions on Microwave Theory and Techniques EMC-23, 377 (1981).

Data & Media loading...


Article metrics loading...



The acoustic properties of a hybrid composite that exhibits both photonic and phononic behavior are investigated numerically with finite-element and finite-difference time-domain simulations. The structure is constituted of a periodic array of photonic resonant cavities embedded in a background superlattice. The resonant cavities contain a photo-elastic chalcogenide glass that undergoes atomic-scale structural reorganization when irradiated with light having energy close to its band-gap. Photo-excitation of the chalcogenide glass changes its elastic properties and, consequently, augments the acoustic transmission spectrum of the composite. By modulating the intensity of light irradiating the hybrid photonic/phononic structure, the position and spectral width of phonon passing-bands can be controlled. This demonstration offers the technological platform for optically-tunable acoustic wave band-pass filters.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd