Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904362
1.
1.R. Berman, Thermal conduction in Solids (Oxford University Press, Oxford, 1976).
2.
2.H. B. G. Casimir, Physica 5, 595 (1938).
3.
3.J. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960).
4.
4.J. R. Howell, R. Siegel, and M. P. Mengüc, Thermal Radiation Heat Transfer, 5th ed. (CRC Press, 2011).
5.
5.M. Perlmutter and R. Siegel, J. Heat Transfer 85C, 55 (1963).
http://dx.doi.org/10.1115/1.3686010
6.
6.M. P. Mengüc and R. Viskanta, J. Heat Transfer 108, 271 (1986).
http://dx.doi.org/10.1115/1.3246915
7.
7.K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, Nat. Commun. 4, 1640 (2013).
http://dx.doi.org/10.1038/ncomms2630
8.
8.R. Berman, F. E. Simon, and J. M. Ziman, Proc. Roy. Soc. A 220, 171 (1953).
http://dx.doi.org/10.1098/rspa.1953.0180
9.
9.A. K. McCurdy, H. J. Maris, and C. Elbaum, Phys. Rev. B 2, 4077 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4077
10.
10.M. N. Wybourne, C. G. Eddison, and M. J. Kelly, J. Phys. C 17, L607 (1984).
http://dx.doi.org/10.1088/0022-3719/17/23/004
11.
11.C. G. Eddison and M. N. Wybourne, J. Phys. C 18, 5225 (1985).
http://dx.doi.org/10.1088/0022-3719/18/26/030
12.
12.H. J. Maris and S. Tamura, Phys. Rev. B 85, 054304 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054304
13.
13.T. Klitsner, J. E. VanCleve, H. E. Fischer, and R. O. Pohl, Phys. Rev. B 38, 7576 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.7576
14.
14.P. J. Koppinen and I. J. Maasilta, Phys. Rev. Lett. 102, 165502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.165502
15.
15.W. C. Fon, K. C. Schwab, J. M. Worlock, and M. L. Roukes, Phys. Rev. B 66, 045302 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.045302
16.
16.T. S. Tighe, J. M. Worlock, and M. L. Roukes, Appl. Phys. Lett. 70, 2687 (1997).
http://dx.doi.org/10.1063/1.118994
17.
17.D. Li, Y. Wu, P. Kim, L. Shi, P. Ynag, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
18.
18.O. Bourgeois, T. Fournier, and J. Chaussy, J. Appl. Phys. 101, 016104 (2007).
http://dx.doi.org/10.1063/1.2400093
19.
19.J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano Lett. 9, 1861 (2009).
http://dx.doi.org/10.1021/nl803844j
20.
20.K. Rostem, D. T. Chuss, F. A. Colazo, E. J. Crowe, K. L. Denis, N. P. Lourie, S. H. Moseley, T. R. Stevenson, and E. J. Wollack, J. Appl. Phys. 115, 124508 (2014).
http://dx.doi.org/10.1063/1.4869737
21.
21.D. Osman, S. Withington, D. J. Goldie, and D. M. Glowacka, J. Appl. Phys. 116, 064506 (2014).
http://dx.doi.org/10.1063/1.4893019
22.
22.Cryogenic particle Detection, edited by C. Enss (Springer-Verlag, Heidelberg, 2005).
23.
23.K. M. Kinnunen, M. R. J. Palosaari, and I. J. Maasilta, J. Appl. Phys. 112, 034515 (2012).
http://dx.doi.org/10.1063/1.4745908
24.
24.Nobuyuki Zen, Tuomas A. Puurtinen, Tero J. Isotalo, Saumyadip Chaudhuri, and Ilari J. Maasilta, Nat. Commun. 5, 3435 (2014).
http://dx.doi.org/10.1038/ncomms4435
25.
25.J.T. Karvonen, T. Kühn, and I.J. Maasilta, Chin. Journal Phys. 49, 435 (2011).
26.
26.H.F.C. Hoevers, M.L. Ridder, A. Germeau, M.P. Bruijn, and P.A.J. Korte, Appl. Phys. Lett. 86, 251903 (2005).
http://dx.doi.org/10.1063/1.1949269
27.
27.W. Holmes, J.M. Gildemeister, P.L. Richards, and V. Kotsubo, Appl. Phys. Lett. 38, 2250 (1998).
http://dx.doi.org/10.1063/1.121269
28.
28.I. J. Maasilta, AIP Advances 1, 041704 (2011).
http://dx.doi.org/10.1063/1.3675925
29.
29.P. D. Vu, J. R. Olson, and R. O. Pohl, Ann. Physik 4, 9 (1995).
http://dx.doi.org/10.1002/andp.19955070103
30.
30.M.M. Leivo and J.P. Pekola, Appl. Phys. Lett. 70, 1305 (1998).
http://dx.doi.org/10.1063/1.120979
31.
31.M. P. J. Palosaari, L. Grönberg, K. M. Kinnunen, D. Gunnarsson, M. Prunnila, and I. J. Maasilta, IEEE Trans. Appl. Supercond. (2014), in press.
http://dx.doi.org/10.1109/TASC.2014.2366641
32.
32.J. P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998), p. 83.
33.
33.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
34.
34.G. K. Babaei, H. J. R. Westra, E. W. J. M. van der Drift, W. J. Venstra, and H. S. J. van der Zant, Appl. Phys. Lett. 94, 233108 (2009).
http://dx.doi.org/10.1063/1.3152772
35.
35.M. Kenyon, P. K. Day, C. M. Bradford, J. J. Bock, and H. G. Leduc, Proc. SPIE 6275, 627508 (2006).
http://dx.doi.org/10.1117/12.672036
36.
36.D. J. Goldie, A. V. Velichko, D. M. Glowacka, and S. Withington, J. Appl. Phys. 109, 084507 (2011).
http://dx.doi.org/10.1063/1.3561432
37.
37.J. Wei, D. Olaya, B. S. Karasik, S. V. Pereverzev, A. V. Sergeev, and M. E. Gershenson, Nat. Nanotechnol. 3, 496 (2008).
http://dx.doi.org/10.1038/nnano.2008.173
38.
38.J. Govenius, R. E. Lake, K. Y. Tan, V. Pietilä, J. K. Julin, I. J. Maasilta, P. Virtanen, and M. Möttönen, Phys. Rev. B 90, 064505 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.064505
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904362
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904362
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904362
2014-12-11
2016-12-04

Abstract

In a previous publication [I. J. Maasilta, AIP Advances , 041704 (2011)], we discussed the formalism and some computational results for phononic thermal conduction in the suspended membrane geometry for radial heat flow from a central source, which is a common geometry for some low-temperature detectors, for example. We studied the case where only diffusive surface scattering is present, the so called Casimir limit, which can be experimentally relevant at temperatures below ∼ 10 K in typical materials, and even higher for ultrathin samples. Here, we extend our studies to much thinner membranes, obtaining numerical results for geometries which are more typical in experiments. In addition, we interpret the results in terms of the small signal and differential thermal conductance, so that guidelines for designing devices, such as low-temperature bolometric detectors, are more easily obtained. Scaling with membrane dimensions is shown to differ significantly from the bulk scattering, and, in particular, thinning the membrane is shown to lead to a much stronger reduction in thermal conductance than what one would envision from the simplest bulk formulas.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904362.html;jsessionid=N-hGrr13QDw4hymK6DItsYHi.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904362&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904362&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904362'
Right1,Right2,Right3,