Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904406
1.
1.I. Newton, Principia, Book II, 1686.
2.
2.L. Brillouin, Wave Propagation in Periodic Structures, 2nd ed. (Dover Publ., N.Y., 1953).
3.
3.Proceedings of the Royal Society of London, series A, Vol. 371, pp. 1-177, The Beginnings of Solid State Physics.
4.
4.E. N. Economou, The Physics of Solids: Essentials and Beyond (Springer, Berlin, 2010).
5.
5.P.W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 109, 1492 (1958).
http://dx.doi.org/10.1103/PhysRev.109.1492
6.
6.E. Yablonovitch and T. J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Phys. Rev. Lett. 63, 1950 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1950
7.
7.K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.3152
8.
8.K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Sol. State Commun. 89, 413 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90202-X
9.
9.J. D. Joannopoulos et al., Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).
10.
10.M. M. Sigalas and E. N. Economou, “Elastic and acoustic wave band structure,” J. of Sound and Vibrations 158, 377-382 (1992).
http://dx.doi.org/10.1016/0022-460X(92)90059-7
11.
11.M. Kafesaki, R. S. Penciu, and E. N. Economou, “Air bubbles in water: a strongly multiple scattering medium for acoustic waves,” Phys. Rev. Lett. 84, 6050 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.6050
12.
12.E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.1945
13.
13.M. Kafesaki and E. N. Economou, “Interpretation of the band structure results for elastic and acoustic waves by analogy with the LCAO approach,” Phys. Rev. B 52, 13317-13331 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.13317
14.
14.Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
15.
15. Landau and Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986).
16.
16.M. Kafesaki and E. N. Economou, “Multiple scattering theory for 3D periodic acoustic composites,” Phys. Rev. B 60, 11993 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.11993
17.
17.J. H. Page, Ping Sheng, H. P. Schriemer, I. Jones, Xiaodun Jing, and D. A. Weitz, “Group Velocity in Strongly Scattering Media,” Science 271, 634 (1990).
http://dx.doi.org/10.1126/science.271.5249.634
18.
18.R. Sainidou, N. Stefanou, E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comp. Phys. Comm. 166, 197 (2005).
http://dx.doi.org/10.1016/j.cpc.2004.11.004
19.
19.E. N. Economou, Green’s functions in Quantum Physics, 3rd ed. (Springer Verlag, 2006).
20.
20.E. N. Economou and A. Zdetsis, “Classical wave propagation in periodic structures,” Phys. Rev. B 40, 1334 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.1334
21.
21.E. N. Economou and M. M. Sigalas, “Stop bands for elastic waves in periodic composite materials,” J. Acoust. Soc. Am. 95, 1735 (1994).
22.
22.M. Sigalas, M. S. Kushwaha, E. N. Economou, M. Kafesaki, I. E. Psarobas, and W. Steurer, “Classical vibrational modes in photonic lattices: theory and experiment,” Zeitschrift fur Kristallographie 220, 765-809 (2005).
http://dx.doi.org/10.1524/zkri.2005.220.9-10.765
23.
23.M. Kafesaki, E. N. Economou, and M. M. Sigalas, in Photonic Band gap Materials, edited by C.M. Soukoulis (Kluwer, Dordrecht, 1996), pp. 143-164.
24.
24.A. Sato, Y. Pennec, T. Yanagishita, H. Masuda, W. Knoll, B. Djafari-Rouhani, and G. Fytas, “Cavity-type hypersonic phononic crystals,” New Journal of Physics 14, 113032 (2012), Fig. 5(a).
http://dx.doi.org/10.1088/1367-2630/14/11/113032
25.
25.J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 563-573.
26.
26.Acoustic Metamaterials and Phononic Crystals, edited by P.A. Deymier (Springer, Berlin, 2013).
27.
27.M.I. Hussein, M. J. Leamy, and M. Ruzzene, “Closure to Discussion of ‘Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook,” Appl. Mech. Rev. 66, 040802 (2014).
http://dx.doi.org/10.1115/1.4026911
28.
28.X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional phononic crystals,” Appl. Phys. Lett. 85, 341 (2004).
http://dx.doi.org/10.1063/1.1772854
29.
29.G.W. Milton and A. Cherkaev, “Which elasticity tensors are realizable,” J. of Eng. Mater. Techn 117, 483 (1995).
http://dx.doi.org/10.1115/1.2804743
30.
30.G. W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002).
31.
31.M. Kadic, T. Buckmann, N. Stenger, M. Thiel, and M. Wegener, “On the practicability of pentamode mechanical metamaterials,” Appl. Phys. Lett. 100, 191901 (2012).
http://dx.doi.org/10.1063/1.4709436
32.
32.A. Martin, M. Kadic, R. Schittny, T. Buckmann, and M. Wegener, “Phonon band structure of three-dimensional pentamode metamaterials,” Phys. Rev. B 86, 155116 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.155116
33.
33.R. Schittny et al., “Three-dimensional labyrinthine acoustic metamaterials,” Appl. Phys. Lett. 103, 231905 (2013).
http://dx.doi.org/10.1063/1.4838663
34.
34.N. Aravantinos-Zafiris, M. M. Sigalas, and E. N. Economou, “Elastodynamic behavior of the three dimensional layer-by-layer metamaterial structure,” Journal of Applied Physics (to appear).
35.
35.A. A. Basharin, Ch. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87, 155130 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155130
36.
36.R. Lucklum and J. Li, “Phononic crystals for liquid sensor applications,” Measurement Science and Technology 20, 124014 (2009).
http://dx.doi.org/10.1088/0957-0233/20/12/124014
37.
37.R. Lucklum, M. Kea, and M. Zubtsova, “Two-dimensional phononic crystal sensor based on a cavity mode,” Sensors and Actuators B 171-172, 271 (2012).
http://dx.doi.org/10.1016/j.snb.2012.03.063
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904406
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904406
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904406
2014-12-12
2016-12-03

Abstract

In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904406.html;jsessionid=gT6tZaSMW7VzSaM_zM3BXBue.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904406&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904406&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904406'
Right1,Right2,Right3,