Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904428
1.
1.L.E. Klebanoff and J.O. Keller, Int. J. Hydrogen Energy 38, 4533-4576 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.01.051
2.
2.G.G. Froment, K.B. Bischoff, and J. DeWilde, Chemical Reactor Analysis and Design, third ed. (Wiley, Hoboken, 2010).
3.
3.B. Bogdanović, U. Eberle, M. Felderhoff, and F. Schüth, Scripta Mater. 56, 813 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.01.004
4.
4.A. Züttel, A. Borgschulte, and S.I. Orimo, Scripta Mater. 2007(56), 823-828 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.01.010
5.
5.H.I. Schlesinger et al., J. Am. Chem. Soc. 75, 186-190 (1953).
http://dx.doi.org/10.1021/ja01097a049
6.
6.K.L. Lindsay and B. Rouge, “Preparation of Alkali Metal Hydrides,” US pat. 3,505,036 (1967).
7.
7.B. Bogdanović and M. Schwickardi, J. Alloys Compd. 253, 1-9 (1997).
http://dx.doi.org/10.1016/S0925-8388(96)03049-6
8.
8.D. L. Anton, J. Alloys Compd. 356, 400-404 (2004).
9.
9.T.J. Frankcombe, Chem. Rev. 112, 2164-2178 (2012).
http://dx.doi.org/10.1021/cr2001838
10.
10.O. Palumbo, A. Paolone, R. Cantelli, C. Jensen, and R. Ayabe, Mater. Sci. Eng. A 442, 75-78 (2006).
http://dx.doi.org/10.1016/j.msea.2006.02.209
11.
11.A. Borgschulte et al., Phys. Chem. Chem. Phys. 10, 4045-4055 (2008).
http://dx.doi.org/10.1039/b803147a
12.
12.S. Singh et al., Acta Mater. 55, 5549-5557 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.06.028
13.
13.E. Ivanov, I. Konstanchuk, A. Stepanov, and V. Boldyrev, J. Less Comm. Met. 131, 25-16 (1987).
http://dx.doi.org/10.1016/0022-5088(87)90497-8
14.
14.A. Marashdeh, R.A. Olsen, O.M. Løvvik, and G.J. Kroes, J. Phys. Chem. C 111, 8206-82013 (2007).
http://dx.doi.org/10.1021/jp067083b
15.
15.J. Íňiguez and T. Yildirim, Appl. Phys. Lett. 86, 103109/1-3 (2005).
http://dx.doi.org/10.1063/1.1881787
16.
16.P.E. de Jongh, Nature Mater. 10, 265-266 (2011).
http://dx.doi.org/10.1038/nmat2995
17.
17.L. Schlapbach, “Surface properties and activation,” in Hydrogen in Intermetallic Compounds II, edited by L. Schlapbach (Springer Verlag, Berlin, 1992).
18.
18.C. Wu, A. Borgschulte, U. Frischknecht, Y. Yan, F. Yang, L. Luo, Y. Chen, and A. Züttel, J. Alloys Compds. 580, S156-S158 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.119
19.
19.H. C. Siegmann, L. Schlapbach, and C. R. Brundle, Phys. Rev. Lett. 40, 972-975 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.972
20.
20.M. Park, J.-H. Shim, Y.-S. Lee, Y.H. Im, and Y.W. Cho, J. Alloys Compds. 575, 393-398 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.05.210
21.
21.A. Borgschulte, M. Bielmann, A. Züttel, G. Barkhordarian, M. Dornheim, and R. Bormann, Appl. Surf. Sci. 254, 2377-2384 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.09.069
22.
22.J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature 380, 231-234 (1996).
http://dx.doi.org/10.1038/380231a0
23.
23.A. Borgschulte, R. J. Westerwaal, J. H. Rector, B. Dam, R. Griessen, and J. Schoenes, Phys. Rev. B 70, 155414/1-8 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.155414
24.
24.A. Léon, D. Schild, and M. Fichtner, J. Alloys Compd. 404-406, 766-770 (2005).
http://dx.doi.org/10.1016/j.jallcom.2004.11.129
25.
25.C. Rongeat, I. Llamas-Jansa, S. Oswald, L. Schultz, and O. Gutfleisch, Acta Mater. 57, 5563-5570 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.07.053
26.
26.M.P. Seah, I.S. Gilmore, and S.J. Spencer, J. Elec. Spec. 120, 93-111 (2001).
http://dx.doi.org/10.1016/S0368-2048(01)00311-5
27.
27.T.N. Dymova, Yu.M. Dergachev, V.A. Sokolov, and N.A. Grechanaya, Dokl. Akad. Nauk SSSR. 224, 591-592 (1975).
28.
28.J. A. Dilts and E. C. Ashby, Inorg. Chem. 11, 1230-1236 (1972).
http://dx.doi.org/10.1021/ic50112a015
29.
29.H. Yao, H. Kawasaki, S. Isobe, Y. Wang, N. Hashimoto, and S. Ohnuki, Mater. Trans. 51, 1016-1019 (2010).
http://dx.doi.org/10.2320/matertrans.MBW200902
30.
30.S. Isobe, H. Yao, Y. Wang, H. Kawasaki, N. Hashimoto, and S. Ohnuki, Int. J. Hydrogen Energy 35, 7563-7567 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2010.05.001
31.
31.X. Ke and I. Tanaka, Phys. Rev. B 71, 024117/1-16 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.024117
32.
32.G.E. McGuire, G.K. Schweitzer, and T.A. Carlson, Inorg. Chem. 12, 2450-2453 (1973).
http://dx.doi.org/10.1021/ic50128a045
33.
33.Y. Okamoto, T. Adachi, A. Maezawa, and T. Imanaka, Bull. Chem. Soc. Jpn. 64, 236-242 (1991).
http://dx.doi.org/10.1246/bcsj.64.236
34.
34.K. Arata and M. Hino, Appl. Catal. 59, 197-204 (1990).
http://dx.doi.org/10.1016/S0166-9834(00)82197-1
35.
35.R. Hauert, J. Patscheider, M. Tobler, and R. Zehringer, Surf. Sci. 292, 121-129 (1993).
http://dx.doi.org/10.1016/0039-6028(93)90395-Z
36.
36.P.B. Amama, J.T Grant, P.J. Shamberger, A.A. Voevodin, and T.S. Fisher, J. Phys. Chem. C 116, 21886-21894 (2012).
http://dx.doi.org/10.1021/jp307225w
37.
37.B.R. Strohmeier, Surf. Sci. Spectra 3, 135-140 (1994).
http://dx.doi.org/10.1116/1.1247774
38.
38.G. Stepura, V. Rosenband, and A. Gany, J. Alloys Compd. 513, 159-164 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.10.012
39.
39.W. Chen, L. Wang, and S. Lu, J. Alloys Compd. 469, 142-145 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.01.157
40.
40.M. Yan, Y. Liu, G.B. Schaffer, and M. Qian, Scripta Mater. 68, 63-66 (2013).
http://dx.doi.org/10.1016/j.scriptamat.2012.09.024
41.
41.A. Pashutski, A. Hoffman, and F. Folman, Surf. Sci. 208, L91-L97 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90001-0
42.
42.C.D. Wagner, D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, and J.A. Taylor, J. Vac. Sci. Technol. 21, 933-944 (1982).
http://dx.doi.org/10.1116/1.571870
43.
43.A. Roustila, J. Chêne, and C. Séverac, Int. J. Hydrogen Energy 32, 5026-5032 (2007).
http://dx.doi.org/10.1016/j.ijhydene.2007.07.007
44.
44.S. Chaudhuri, J. Graetz, A.Y. Ignatov, J.J. Reilly, and J.T. Muckerman, J. Am. Chem. Soc. 128, 11404-11415 (2006).
http://dx.doi.org/10.1021/ja060437s
45.
45.J. Graetz, J.J. Reilly, J. Johnson, A.Y. Ignatov, and T.A. Tyson, Appl. Phys. Lett. 85, 500-502 (2004).
http://dx.doi.org/10.1063/1.1773614
46.
46.A. Ermolieff, P. Bernard, S. Marthon, and P. Wittmer, Surf. Interface Anal. 11, 563-568 (1988).
http://dx.doi.org/10.1002/sia.740111105
47.
47.C. Sleigh, A.P. Pijpers, A. Jaspers, B. Coussens, and R.J. Meier, J. Elec. Spec. 77, 41-57 (1996).
http://dx.doi.org/10.1016/0368-2048(95)02392-5
48.
48.H.F. Franzen, M.X. Umana, J.R. McCreary, and R.J. Thorn, J. Solid State Chem. 18, 363-368 (1976).
http://dx.doi.org/10.1016/0022-4596(76)90119-5
49.
49.C. M. Chang, S. Trigwell, and T. Duerig, Surf. Interface Anal. 15, 349-354 (1990).
http://dx.doi.org/10.1002/sia.740150602
50.
50.M. Hierro-Oliva, A.M. Gallardo-Moreno, and M.L. González-Martín, Metall. Mater. Trans. A 45A, 6285-6290 (2014).
http://dx.doi.org/10.1007/s11661-014-2570-0
51.
51.I. Barin, Thermochemical Data of Pure Substances, third ed. (Wiley, Weinheim, 1995).
52.
52.N. Fairley and A. Carrick, The Casa Cookbook - Part 1: Recipes for XPS Data Processing (Acolyte Science, Knutsford, 2005).
53.
53.L. Wang, J.-X. Shang, F.-H. Wang, Y. Chen, and Y. Zhang, Acta Mater. 61, 1726-1738 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.11.047
54.
54.I. Giner, M. Maxisch, C. Kunze, and G. Grundmeier, Appl. Surf. Sci. 283, 145-153 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.06.059
55.
55.G. Busca, Catal. Today 226, 2-13 (2014).
http://dx.doi.org/10.1016/j.cattod.2013.08.003
56.
56.U. Diebold, Surf. Sci. Rep. 48, 53-229 (2003).
http://dx.doi.org/10.1016/S0167-5729(02)00100-0
57.
57.R. Bogdanović, A. Brand, A. Marjanović, M. Schwickardi, and J. Tölle, J. Alloys Compd. 302, 36-58 (2000).
http://dx.doi.org/10.1016/S0925-8388(99)00663-5
58.
58.E. G. Sorte et al., J. Phys. Chem. C 117, 8105-8113 (2013).
http://dx.doi.org/10.1021/jp401134t
59.
59.E. G. Sorte et al., J. Phys. Chem. C 117, 23575-23581 (2013).
http://dx.doi.org/10.1021/jp4093892
60.
60.R. L. Corey et al., J. Phys. Chem. C 112, 19784-19790 (2008).
http://dx.doi.org/10.1021/jp807900r
61.
61.N. Eigen, M. Kunowsky, T. Klassen, and R. Bormann, J. Alloys Compd. 430, 350-355 (2007).
http://dx.doi.org/10.1016/j.jallcom.2006.05.025
62.
62.E. Serra, J. Am. Ceram. Soc. 88, 15-18 (2005).
http://dx.doi.org/10.1111/j.1551-2916.2004.00003.x
63.
63.G. C. Yu, Phys. Stat. Sol. A 198, 302-311 (2003).
http://dx.doi.org/10.1002/pssa.200306618
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904428
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904428
2014-12-12
2016-09-27

Abstract

The reversibility of hydrogen sorption in complex hydrides has only been shown unambiguously for NaAlH doped with transition metal compounds. Despite a multitude of investigations of the effect of the added catalyst on the hydrogen sorption kinetics of NaAlH, the mechanism of catalysis remains elusive so far. Following the decomposition of TiCl-doped NaAlH by in-situ X-ray photoelectron spectroscopy (XPS), we link the chemical state of the dopant with those of the hydride and decomposition products. Titanium and aluminium change their oxidation states during cycling. The change of the formal oxidation state of Al from III to zero is partly due to the chemical reaction from NaAlH to Al. Furthermore, aluminium oxide is formed (Al O), which coexists with titanium oxide (TiO). The interplay of metallic and oxidized Ti with the oxide skin might explain the effectiveness of Ti and similar dopants (Ce, Zr…).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904428.html;jsessionid=_gcgH96BLPSvENOsOrXX6ipt.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904428&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904428'
Right1,Right2,Right3,