Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2.L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
3.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature Phys. 5, 398 (2009).
4.X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323, 1184 (2009).
5.Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659 (2010).
6.L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, Nature Phys. 7, 32 (2010).
7.X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).
8.C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).
9.V. Kulbachinskii, A. Kaminskii, K. Kindo, Y. Narumi, K. Suga, P. Lostak, and P. Svanda, Physica B 311, 292 (2002).
10.M. R. Scholz, J. Sánchez-Barriga, D. Marchenko, A. Varykhalov, A. Volykhov, L. V. Yashina, and O. Rader, Phys. Rev. Lett. 108, 256810 (2012).
11.J. Choi, S. Choi, J. Choi, Y. Park, H. Park, H. Lee, B. Woo, and S. Cho, Phys. Stat. Sol. (b) 241, 1541 (2004).
12.J. W. G. Bos, M. Lee, E. Morosan, H. W. Zandbergen, W. L. Lee, N. P. Ong, and R. J. Cava, Phys. Rev. B 74, 184429 (2006).
13.Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).
14.M. D. Watson, L. J. Collins-McIntyre, A. I. Coldea, D. Prabhakaran, L. R. Shelford, S. C. Speller, T. Mousavi, C. Grovenor, Z. Salman, S. R. Giblin, G. van der Laan, and T. Hesjedal, New J. Phys. 15, 103016 (2013).
15.J. Wang, B. Lian, H. Zhang, Y. Xu, and S.-C. Zhang, Phys. Rev. Lett. 111, 136801 (2013).
16.L. J. Collins-McIntyre, S. E. Harrison, P. Schoenherr, N.-J. Steinke, C. J. Kinane, T. R. Charlton, D. Alba-Veneroa, A. Pushp, A. J. Kellock, S. S. P. Parkin, J. S. Harris, S. Langridge, G. van der Laan, and T. Hesjedal, Europhys. Lett. 107, 57009 (2014).
17.A. I. Figueroa, G. van der Laan, L. J. Collins-McIntyre, S.-L. Zhang, A. A. Baker, S. E. Harrison, P. Schönherr, G. Cibin, and T. Hesjedal, Phys. Rev. B 90, 134402 (2014).
18.Z. Liu, X. Wei, J. Wang, H. Pan, F. Ji, F. Xi, J. Zhang, T. Hu, S. Zhang, Z. Jiang, W. Wen, Y. Huang, M. Ye, Z. Yang, and S. Qiao, Phys. Rev. B 90, 094107 (2014).
19.P. Larson and W. R. L. Lambrecht, Phys. Rev. B 78, 195207 (2008).
20.H. J. von Bardeleben, J. L. Cantin, D. M. Zhang, A. Richardella, D. W. Rench, N. Samarth, and J. A. Borchers, Phys. Rev. B 88, 075149 (2013).
21.D. Zhang, A. Richardella, D. W. Rench, S.-Y. Xu, A. Kandala, T. C. Flanagan, H. Beidenkopf, A. L. Yeats, B. B. Buckley, P. V. Klimov, D. D. Awschalom, A. Yazdani, P. Schiffer, M. Z. Hasan, and N. Samarth, Phys. Rev. B 86, 205127 (2012).
22.A. Koma, K. Sunouchi, and T. Miyajima, Microelectron. Eng. 2, 129 (1984).
23.Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, AIP Adv. 3, 072112 (2013).
24.M. Björck and G. Andersson, J. Appl. Cryst. 40, 1174 (2007).
25.Y. H. Choi, N. H. Jo, K. J. Lee, H. W. Lee, Y. H. Jo, J. Kajino, T. Takabatake, K.-T. Ko, J.-H. Park, and M. H. Jung, Appl. Phys. Lett. 101, 152103 (2012).
26.G. van der Laan and A. I. Figueroa, Coord. Chem Rev. 277-278, 95 (2014).
27.I. Vobornik, U. Manju, J. Fujii, F. Borgatti, P. Torelli, D. Krizmancic, Y. S. Hor, R. J. Cava, and G. Panaccione, Nano Lett. 11, 4079 (2011).
28.S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sanchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Z. Hasan, Nature Phys. 8, 616 (2012).
29.I. Vobornik, G. Panaccione, J. Fujii, Z.-H. Zhu, F. Offi, B. R. Salles, F. Borgatti, P. Torelli, J. P. Rueff, D. Ceolin, A. Artioli, M. Unnikrishnan, G. Levy, M. Marangolo, M. Eddrief, D. Krizmancic, H. Ji, A. Damascelli, G. van der Laan, R. G. Egdell, and R. J. Cava, J. Phys. Chem. C 118, 12333 (2014).
30.B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).
31.P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
32.K. W. Edmonds, N. R. S. Farley, T. K. Johal, G. van der Laan, R. P. Campion, B. L. Gallagher, and C. T. Foxon, Phys. Rev. B 71, 064418 (2005).
33.G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991).
34.G. van der Laan, Lect. Notes Phys. 697, 143 (2006).
35.R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1992).
36.K. Edmonds, N. Farley, R. Campion, C. Foxon, B. Gallagher, T. Johal, G. van der Laan, M. MacKenzie, J. Chapman, and E. Arenholz, Appl. Phys. Lett. 84, 4065 (2004).
37.G. Springholz, J. Sanchez Barriga, H. Steiner, R. Kirchschlager, G. Bauer, A. Varykhalov, O. Rader, E. Schierle, E. Weschke, O. Caha, and V. Holy, in in 20th International Conference on Electronic Properties of Two-Dimensional Systems (2014).
38.A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, Mater. Sci. Eng. B 64, 19 (1999).
39.Y.-L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
40.Y.-J. Chien, “Transition Metal-Doped Sb2Te3 and Bi2Te3 Diluted Magnetic Semiconductors,” Ph.D. thesis (The University of Michigan, 2007).
41.H. A and C. Elsässer, Phys. Rev. B 84, 144117 (2011).
42.L. Xue, P. Zhou, C. X. Zhang, C. Y. He, G. L. Hao, L. Z. Sun, and J. X. Zhong, AIP Adv. 3, 052105 (2013).
43.J.-M. Zhang, W. Ming, Z. Huang, G.-B. Liu, X. Kou, Y. Fan, K. L. Wang, and Y. Yao, Phys. Rev. B 88, 235131 (2013).
44.J.-M. Zhang, W. Zhu, Y. Zhang, D. Xiao, and Y. Yao, Phys. Rev. Lett. 109, 266405 (2012).
45.M. C. Shaughnessy, N. C. Bartelt, J. A. Zimmerman, and J. D. Sugar, J. Appl. Phys. 115, 063705 (2014).
46.J. Horák, P. Lošt’ák, C. Drašar, J. S. Dyck, Z. Zhouc, and C. Uher, J. Solid State Chem. 178, 2907 (2005).
47.M. G. Vergniory, M. M. Otrokov, D. Thonig, M. Hoffmann, I. V. Maznichenko, M. Geilhufe, X. Zubizarreta, S. Ostanin, A. Marmodoro, J. Henk, W. Hergert, I. Mertig, E. V. Chulkov, and A. Ernst, Phys. Rev. B 89, 165202 (2014).
48.J. Choi, H.-W. Lee, B.-S. Kim, H. Park, S. Choi, S. C. Hong, and S. Cho, J. Magn. Magn. Mater. 304, 164 (2006).
49.P. Janíček, Č. Drašar, P. Lošt’ák, J. Vejpravová, and V. Sechovský, Physica B 403, 3553 (2008).
50.G. Rosenberg and M. Franz, Phys. Rev. B 85, 195119 (2012).
51.H. C. Jeon, Y. S. Jeong, T. W. Kang, T. W. Kim, K. J. Chung, K. J. Chung, W. Jhe, and S. A. Song, Adv. Mater. 14, 1725 (2002).<1725::AID-ADMA1725>3.0.CO;2-Q
52.M. A. Korzhuev and T. E. Svechnikov, Sov. Phys. Semicond. 25, 1288 (1991).
53.R. O. Carlson, J. Phys. Chem. Solids 13, 65 (1960).
54.T. Jungwirth, K. Wang, J. Masek, K. Edmonds, J. Konig, J. Sinova, M. Polini, N. Goncharuk, A. MacDonald, M. Sawicki, A. Rushforth, R. Campion, L. Zhao, C. Foxon, and B. Gallagher, Phys. Rev. B 72, 165204 (2005).
55.L. Wu, M. Brahlek, R. Valdés Aguilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, Nature Phys. 9, 410 (2013).
56.J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).
57.See supplementary material at for X-ray diffraction data for a series of material over-doped with Mn in Bi2Se3.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We report the growth of Mn-doped BiSe thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on -plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 /Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 /Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd