Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904900
1.
1.M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
2.
2.L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
3.
3.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
4.
4.X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Science 323, 1184 (2009).
http://dx.doi.org/10.1126/science.1167747
5.
5.Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science 329, 659 (2010).
http://dx.doi.org/10.1126/science.1189924
6.
6.L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, Nature Phys. 7, 32 (2010).
http://dx.doi.org/10.1038/nphys1838
7.
7.X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195424
8.
8.C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).
http://dx.doi.org/10.1126/science.1234414
9.
9.V. Kulbachinskii, A. Kaminskii, K. Kindo, Y. Narumi, K. Suga, P. Lostak, and P. Svanda, Physica B 311, 292 (2002).
http://dx.doi.org/10.1016/S0921-4526(01)00975-9
10.
10.M. R. Scholz, J. Sánchez-Barriga, D. Marchenko, A. Varykhalov, A. Volykhov, L. V. Yashina, and O. Rader, Phys. Rev. Lett. 108, 256810 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.256810
11.
11.J. Choi, S. Choi, J. Choi, Y. Park, H. Park, H. Lee, B. Woo, and S. Cho, Phys. Stat. Sol. (b) 241, 1541 (2004).
http://dx.doi.org/10.1002/pssb.200304527
12.
12.J. W. G. Bos, M. Lee, E. Morosan, H. W. Zandbergen, W. L. Lee, N. P. Ong, and R. J. Cava, Phys. Rev. B 74, 184429 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.184429
13.
13.Y. S. Hor, P. Roushan, H. Beidenkopf, J. Seo, D. Qu, J. G. Checkelsky, L. A. Wray, D. Hsieh, Y. Xia, S.-Y. Xu, D. Qian, M. Z. Hasan, N. P. Ong, A. Yazdani, and R. J. Cava, Phys. Rev. B 81, 195203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195203
14.
14.M. D. Watson, L. J. Collins-McIntyre, A. I. Coldea, D. Prabhakaran, L. R. Shelford, S. C. Speller, T. Mousavi, C. Grovenor, Z. Salman, S. R. Giblin, G. van der Laan, and T. Hesjedal, New J. Phys. 15, 103016 (2013).
http://dx.doi.org/10.1088/1367-2630/15/10/103016
15.
15.J. Wang, B. Lian, H. Zhang, Y. Xu, and S.-C. Zhang, Phys. Rev. Lett. 111, 136801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.136801
16.
16.L. J. Collins-McIntyre, S. E. Harrison, P. Schoenherr, N.-J. Steinke, C. J. Kinane, T. R. Charlton, D. Alba-Veneroa, A. Pushp, A. J. Kellock, S. S. P. Parkin, J. S. Harris, S. Langridge, G. van der Laan, and T. Hesjedal, Europhys. Lett. 107, 57009 (2014).
http://dx.doi.org/10.1209/0295-5075/107/57009
17.
17.A. I. Figueroa, G. van der Laan, L. J. Collins-McIntyre, S.-L. Zhang, A. A. Baker, S. E. Harrison, P. Schönherr, G. Cibin, and T. Hesjedal, Phys. Rev. B 90, 134402 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134402
18.
18.Z. Liu, X. Wei, J. Wang, H. Pan, F. Ji, F. Xi, J. Zhang, T. Hu, S. Zhang, Z. Jiang, W. Wen, Y. Huang, M. Ye, Z. Yang, and S. Qiao, Phys. Rev. B 90, 094107 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.094107
19.
19.P. Larson and W. R. L. Lambrecht, Phys. Rev. B 78, 195207 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195207
20.
20.H. J. von Bardeleben, J. L. Cantin, D. M. Zhang, A. Richardella, D. W. Rench, N. Samarth, and J. A. Borchers, Phys. Rev. B 88, 075149 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075149
21.
21.D. Zhang, A. Richardella, D. W. Rench, S.-Y. Xu, A. Kandala, T. C. Flanagan, H. Beidenkopf, A. L. Yeats, B. B. Buckley, P. V. Klimov, D. D. Awschalom, A. Yazdani, P. Schiffer, M. Z. Hasan, and N. Samarth, Phys. Rev. B 86, 205127 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205127
22.
22.A. Koma, K. Sunouchi, and T. Miyajima, Microelectron. Eng. 2, 129 (1984).
http://dx.doi.org/10.1016/0167-9317(84)90057-1
23.
23.Z. Zeng, T. A. Morgan, D. Fan, C. Li, Y. Hirono, X. Hu, Y. Zhao, J. S. Lee, J. Wang, Z. M. Wang, S. Yu, M. E. Hawkridge, M. Benamara, and G. J. Salamo, AIP Adv. 3, 072112 (2013).
http://dx.doi.org/10.1063/1.4815972
24.
24.M. Björck and G. Andersson, J. Appl. Cryst. 40, 1174 (2007).
http://dx.doi.org/10.1107/S0021889807045086
25.
25.Y. H. Choi, N. H. Jo, K. J. Lee, H. W. Lee, Y. H. Jo, J. Kajino, T. Takabatake, K.-T. Ko, J.-H. Park, and M. H. Jung, Appl. Phys. Lett. 101, 152103 (2012).
http://dx.doi.org/10.1063/1.4755767
26.
26.G. van der Laan and A. I. Figueroa, Coord. Chem Rev. 277-278, 95 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.03.018
27.
27.I. Vobornik, U. Manju, J. Fujii, F. Borgatti, P. Torelli, D. Krizmancic, Y. S. Hor, R. J. Cava, and G. Panaccione, Nano Lett. 11, 4079 (2011).
http://dx.doi.org/10.1021/nl201275q
28.
28.S.-Y. Xu, M. Neupane, C. Liu, D. Zhang, A. Richardella, L. A. Wray, N. Alidoust, M. Leandersson, T. Balasubramanian, J. Sanchez-Barriga, O. Rader, G. Landolt, B. Slomski, J. H. Dil, J. Osterwalder, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, N. Samarth, and M. Z. Hasan, Nature Phys. 8, 616 (2012).
http://dx.doi.org/10.1038/nphys2351
29.
29.I. Vobornik, G. Panaccione, J. Fujii, Z.-H. Zhu, F. Offi, B. R. Salles, F. Borgatti, P. Torelli, J. P. Rueff, D. Ceolin, A. Artioli, M. Unnikrishnan, G. Levy, M. Marangolo, M. Eddrief, D. Krizmancic, H. Ji, A. Damascelli, G. van der Laan, R. G. Egdell, and R. J. Cava, J. Phys. Chem. C 118, 12333 (2014).
http://dx.doi.org/10.1021/jp502729u
30.
30.B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.1943
31.
31.P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. 70, 694 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.694
32.
32.K. W. Edmonds, N. R. S. Farley, T. K. Johal, G. van der Laan, R. P. Campion, B. L. Gallagher, and C. T. Foxon, Phys. Rev. B 71, 064418 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.064418
33.
33.G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.13401
34.
34.G. van der Laan, Lect. Notes Phys. 697, 143 (2006).
http://dx.doi.org/10.1007/3-540-33242-1_7
35.
35.R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, 1992).
36.
36.K. Edmonds, N. Farley, R. Campion, C. Foxon, B. Gallagher, T. Johal, G. van der Laan, M. MacKenzie, J. Chapman, and E. Arenholz, Appl. Phys. Lett. 84, 4065 (2004).
http://dx.doi.org/10.1063/1.1751619
37.
37.G. Springholz, J. Sanchez Barriga, H. Steiner, R. Kirchschlager, G. Bauer, A. Varykhalov, O. Rader, E. Schierle, E. Weschke, O. Caha, and V. Holy, in in 20th International Conference on Electronic Properties of Two-Dimensional Systems (2014).
38.
38.A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, Mater. Sci. Eng. B 64, 19 (1999).
http://dx.doi.org/10.1016/S0921-5107(99)00142-7
39.
39.Y.-L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
40.
40.Y.-J. Chien, “Transition Metal-Doped Sb2Te3 and Bi2Te3 Diluted Magnetic Semiconductors,” Ph.D. thesis (The University of Michigan, 2007).
41.
41.H. A and C. Elsässer, Phys. Rev. B 84, 144117 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144117
42.
42.L. Xue, P. Zhou, C. X. Zhang, C. Y. He, G. L. Hao, L. Z. Sun, and J. X. Zhong, AIP Adv. 3, 052105 (2013).
http://dx.doi.org/10.1063/1.4804439
43.
43.J.-M. Zhang, W. Ming, Z. Huang, G.-B. Liu, X. Kou, Y. Fan, K. L. Wang, and Y. Yao, Phys. Rev. B 88, 235131 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.235131
44.
44.J.-M. Zhang, W. Zhu, Y. Zhang, D. Xiao, and Y. Yao, Phys. Rev. Lett. 109, 266405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.266405
45.
45.M. C. Shaughnessy, N. C. Bartelt, J. A. Zimmerman, and J. D. Sugar, J. Appl. Phys. 115, 063705 (2014).
http://dx.doi.org/10.1063/1.4865735
46.
46.J. Horák, P. Lošt’ák, C. Drašar, J. S. Dyck, Z. Zhouc, and C. Uher, J. Solid State Chem. 178, 2907 (2005).
http://dx.doi.org/10.1016/j.jssc.2005.06.026
47.
47.M. G. Vergniory, M. M. Otrokov, D. Thonig, M. Hoffmann, I. V. Maznichenko, M. Geilhufe, X. Zubizarreta, S. Ostanin, A. Marmodoro, J. Henk, W. Hergert, I. Mertig, E. V. Chulkov, and A. Ernst, Phys. Rev. B 89, 165202 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.165202
48.
48.J. Choi, H.-W. Lee, B.-S. Kim, H. Park, S. Choi, S. C. Hong, and S. Cho, J. Magn. Magn. Mater. 304, 164 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.02.041
49.
49.P. Janíček, Č. Drašar, P. Lošt’ák, J. Vejpravová, and V. Sechovský, Physica B 403, 3553 (2008).
http://dx.doi.org/10.1016/j.physb.2008.05.025
50.
50.G. Rosenberg and M. Franz, Phys. Rev. B 85, 195119 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195119
51.
51.H. C. Jeon, Y. S. Jeong, T. W. Kang, T. W. Kim, K. J. Chung, K. J. Chung, W. Jhe, and S. A. Song, Adv. Mater. 14, 1725 (2002).
http://dx.doi.org/10.1002/1521-4095(20021203)14:23<1725::AID-ADMA1725>3.0.CO;2-Q
52.
52.M. A. Korzhuev and T. E. Svechnikov, Sov. Phys. Semicond. 25, 1288 (1991).
53.
53.R. O. Carlson, J. Phys. Chem. Solids 13, 65 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90127-X
54.
54.T. Jungwirth, K. Wang, J. Masek, K. Edmonds, J. Konig, J. Sinova, M. Polini, N. Goncharuk, A. MacDonald, M. Sawicki, A. Rushforth, R. Campion, L. Zhao, C. Foxon, and B. Gallagher, Phys. Rev. B 72, 165204 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165204
55.
55.L. Wu, M. Brahlek, R. Valdés Aguilar, A. V. Stier, C. M. Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh, and N. P. Armitage, Nature Phys. 9, 410 (2013).
http://dx.doi.org/10.1038/nphys2647
56.
56.J. Henk, M. Flieger, I. V. Maznichenko, I. Mertig, A. Ernst, S. V. Eremeev, and E. V. Chulkov, Phys. Rev. Lett. 109, 076801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.076801
57.
57.See supplementary material at http://dx.doi.org/10.1063/1.4904900 for X-ray diffraction data for a series of material over-doped with Mn in Bi2Se3.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904900
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904900
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904900
2014-12-17
2016-12-04

Abstract

We report the growth of Mn-doped BiSe thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on -plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 /Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 /Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904900.html;jsessionid=1jdLZJwaPtvjbqzznPxNMwPm.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904900&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904900&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904900'
Right1,Right2,Right3,