Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4904949
1.
1.M. A. Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).
http://dx.doi.org/10.1039/c1jm13535j
2.
2.L. N. Patro and K. Hariharan, Solid State Ionics 239, 41 (2013).
http://dx.doi.org/10.1016/j.ssi.2013.03.009
3.
3.N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52, 842 (2007).
http://dx.doi.org/10.1134/S1063774507050148
4.
4.A. Düvel, M. Wilkening, R. Uecker, S. Wegner, V. Šepelák, and P. Heitjans, Phys. Chem. Chem. Phys. 12, 11251 (2010).
http://dx.doi.org/10.1039/c004530f
5.
5.W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, and J. Maier, Solid State Ionics 131, 159 (2000).
http://dx.doi.org/10.1016/S0167-2738(00)00630-5
6.
6.L. N. Patro and K. Hariharan, Mater. Lett. 80, 26 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.04.070
7.
7.J. W. Fergus, Sensor Actuat. B 42, 119 (1997).
http://dx.doi.org/10.1016/S0925-4005(97)00193-7
8.
8.L. Bartholomäus and W. Moritz, Solid State Ionics 132, 31 (2000).
http://dx.doi.org/10.1016/S0167-2738(00)00698-6
9.
9.N. Miura, J. Hisamoto, N. Yamazoe, and S. Kuwata, Appl. Surf. Sci. 33/34, 1253 (1988).
http://dx.doi.org/10.1016/0169-4332(88)90442-4
10.
10.G. Sun, H. Wang, and Z. Jiang, Rev. Sci. Instrum. 82, 083901 (2011).
http://dx.doi.org/10.1063/1.3617471
11.
11.G. Sun, H. Wang, Z. Jiang, C. Guan, and B. Zhang, Rev. Sci. Instrum. 83, 056103 (2012).
http://dx.doi.org/10.1063/1.4718358
12.
12.Y. Wu, D. Yang, X. Kang, Y. Zhang, S. Huang, C. Li, and J. Lin, Cryst. Eng. Commun. 16, 1056 (2014).
http://dx.doi.org/10.1039/c3ce41854e
13.
13.J. W. Stouwdam and F. C. J. M. van Veggel, Nano lett. 2, 733 (2002).
http://dx.doi.org/10.1021/nl025562q
14.
14.D. L. Sidebottom, Rev. Mod. Phys. 81, 999 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.999
15.
15.B. H. Toby, J. Appl. Cryst. 34, 210 (2001).
http://dx.doi.org/10.1107/S0021889801002242
16.
16.A. Zalkin and D. H. Templeton, Acta Crystal. B 41, 91 (1985).
http://dx.doi.org/10.1107/S0108768185001689
17.
17.B. Maximov and H. Schulz, Acta Cryst. B 41, 88 (1985).
http://dx.doi.org/10.1107/S0108768185001677
18.
18.E. Kroumova, M. I. Aroyo, J. M. Perez-Mato, A. Kirov, C. Capillas, S. Ivantchev, and H. Wondratschek, Phase Trans. 76, 155 (2003).
http://dx.doi.org/10.1080/0141159031000076110
19.
19.W. A. Crichton, P. Bouvier, B. Winkler, and A. Grzechnik, Dalton Trans 39, 4302 (2010).
http://dx.doi.org/10.1039/b925817e
20.
20.E. Liarokapis, E. Anastassakis, and G. Kourouklis, Phys. Rev. B 32, 8346 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.8346
21.
21.A. K. Baral, S. Choi, B. K. Kim, and J. H. Lee, Mater Renew Sustain Energy 3, 35 (2014).
http://dx.doi.org/10.1007/s40243-014-0035-4
22.
22.M. T. Rahmana and C. V. Ramana, J. Appl. Phys. 116, 164108 (2014).
http://dx.doi.org/10.1063/1.4896945
23.
23.S. Ramesh, C. Liew, and K. Ramesh, J. Appl. Poly Sci. 127, 2380 (2013).
http://dx.doi.org/10.1002/app.37532
24.
24.A. Roos, A. F. Aalders, J. Schoonman, A. F. M. Arts, and H. W. Wijn, Solid State Ionics 9–10, 571 (1983).
http://dx.doi.org/10.1016/0167-2738(83)90297-7
25.
25.D. P. Almond, G. K. Duncan, and A. R. West, Solid State Ionics 8, 159 (1983).
http://dx.doi.org/10.1016/0167-2738(83)90079-6
26.
26.M. M. Ahmad, Y. Yamane, and K. Yamada, J. Appl. Phys. 106, 074106 (2009).
http://dx.doi.org/10.1063/1.3234393
27.
27.B. Roling, A. Happe, K. Funke, and M. D. Ingram, Phys. Rev. Lett. 78, 2160 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2160
28.
28.A. Ghosh and A. Pan, Phys. Rev. Lett. 84, 2188 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2188
29.
29.L. Dhivya, N. Janani, B. Palanivel, and R. Murugan, J. Appl. Phys. 3, 082115 (2013).
http://dx.doi.org/10.1063/1.4818971
30.
30.T. Paul and A. Ghosh, J. Appl. Phys. 116, 144102 (2014).
http://dx.doi.org/10.1063/1.4897456
31.
31.L. N. Patro and K. Hariharan, Mater. Res. Bull. 47, 2492 (2012).
http://dx.doi.org/10.1016/j.materresbull.2012.05.006
32.
32.B. K. Money and J. Swenson, Macromolecules 46, 6949 (2013).
http://dx.doi.org/10.1021/ma4003598
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4904949
Loading
/content/aip/journal/adva/4/12/10.1063/1.4904949
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4904949
2014-12-18
2016-12-06

Abstract

This article presents the structural and transport characteristics of hydrothermally synthesized LaF nanoparticles with an average crystallite size of . The phase formation of the material is confirmed by both X-ray diffraction and transmission electron microscopy techniques. In addition, phase purity of the LaF nanoparticles is corroborated by micro-Raman spectroscopy studies. The complex impedance plots at different temperatures reveal that the conductivity is predominantly due to the intrinsic bulk grains and the conductivity relaxation is non-Debye in nature. The frequency variation of conductivity exhibits dispersion at higher frequencies that can be explained with the frame work of Almond-West formalism. The conduction process is controlled by the mobility of the charge carriers and the charge of transport of mobile fluoride ions occur through hopping mechanism. The scaling behavior of both frequency dependence of conductivity and complex impedance plots at different temperatures confirm that the relaxation mechanism of the mobile fluoride ions is independent of temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4904949.html;jsessionid=nU5o9p7cIHONl6xCdLj1f1Sl.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4904949&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4904949&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4904949'
Right1,Right2,Right3,