Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905051
1.
1.M. M. Sigalas and E. N. Economou, “Elastic and acoustic wave band structure,” Journal of Sound and Vibration 158, 377382 (1992).
http://dx.doi.org/10.1016/0022-460X(92)90059-7
2.
2.M. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Physical Review Letters 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
3.
3.M. Sigalas and E. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Communications 86, 141143 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
4.
4.Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289, 17341736 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
5.
5.J. Li and C. Chan, “Double-negative acoustic metamaterial,” Physical Review E 70, 055602 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.055602
6.
6.Y. Ding, Z. Liu, C. Qiu, and J. Shi, “Metamaterial with simultaneously negative bulk modulus and mass density,” Physical Review Letters 99, 093904 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.093904
7.
7.Y. Cheng, J. Y. Xu, and X. J. Liu, “One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus,” Physical Review B 77, 045134 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045134
8.
8.S. Yao, X. Zhou, and G. Hu, “Experimental study on negative effective mass in a 1D mass–spring system,” New Journal of Physics 10, 043020 (2008).
http://dx.doi.org/10.1088/1367-2630/10/4/043020
9.
9.R. V. Craster and S. Guenneau, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking (Springer, 2013), Vol. 166.
10.
10.M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook,” Applied Mechanics Reviews 66, 040802 (2014).
http://dx.doi.org/10.1115/1.4026911
11.
11.B. R. Mace, “Discussion of dynamics of phononic materials and structures: Historical origins, recent progress and future outlook (Hussein, M. I., Leamy, M. J., and Ruzzene, M., 2014, ASME Appl. Mech. Rev., 66(4), p. 040802),” Applied Mechanics Reviews 66, 045502 (2014).
http://dx.doi.org/10.1115/1.4027723
12.
12.M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Closure to discussion of dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook (2014, ASME Appl. Mech. Rev., 66(4), p. 040802),” Applied Mechanics Reviews 66, 046002 (2014).
http://dx.doi.org/10.1115/1.4027795
13.
13.G. Wang, X. S. Wen, J. H. Wen, L. H. Shao, and Y. Z. Liu, “Two-dimensional locally resonant phononic crystals with binary structures,” Physical Review Letters 93, 154302 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.154302
14.
14.Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. O. Vasseur, and A.-C. ladky Hennion, “Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate,” Physical Review B 78, 104105 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.104105
15.
15.T. T. Wu, Z. G. Huang, T. C. Tsai, and T. C. Wu, “Evidence of complete band gap and resonances in a plate with periodic stubbed surface,” Applied Physics Letters 93, 111902 (2008).
http://dx.doi.org/10.1063/1.2970992
16.
16.O. R. Bilal and M. I. Hussein, “Trampoline metamaterial: Local resonance enhancement by springboards,” Applied Physics Letters 103, 111901 (2013).
http://dx.doi.org/10.1063/1.4820796
17.
17.R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, “A chiral elastic metamaterial beam for broadband vibration suppression,” Journal of Sound and Vibration 333, 27592773 (2014).
http://dx.doi.org/10.1016/j.jsv.2014.01.009
18.
18.G. Wang, D. Yu, J. Wen, Y. Liu, and X. Wen, “One-dimensional phononic crystals with locally resonant structures,” Physics Letters A 327, 512521 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.05.047
19.
19.D. Yu, Y. Liu, H. Zhao, G. Wang, and J. Qiu, “Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom,” Physical Review B 73, 064301 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064301
20.
20.D. Yu, Y. Liu, G. Wang, H. Zhao, and J. Qiu, “Flexural vibration band gaps in Timoshenko beams with locally resonant structures,” Journal of Applied Physics 100, 124901 (2006).
http://dx.doi.org/10.1063/1.2400803
21.
21.J. Chen, B. Sharma, and C. Sun, “Dynamic behaviour of sandwich structure containing spring-mass resonators,” Composite Structures 93, 21202125 (2011).
http://dx.doi.org/10.1016/j.compstruct.2011.02.007
22.
22.Y. Pennec, B. Djafari-Rouhani, C. Li, J. M. Escalante, A. Martinez, S. Benchabane, V. Laude, and N. Papanikolaou, “Band gaps and cavity modes in dual phononic and photonic strip waveguides,” AIP Advances 1, 041901 (2011).
http://dx.doi.org/10.1063/1.3675799
23.
23.Y. Yao, Z. Hou, F. Wu, and X. Zhang, “Low-frequency band gaps in one-dimensional thin phononic crystal plate with periodic stubbed surface,” Physica B 406, 22492253 (2011).
http://dx.doi.org/10.1016/j.physb.2011.03.043
24.
24.G. Gantzounis, M. Serra-Garcia, K. Homma, J. M. Mendoza, and C. Daraio, “Granular metamaterials for vibration mitigation,” Journal of Applied Physics 114, 093514 (2013).
http://dx.doi.org/10.1063/1.4820521
25.
25.M. Nouh, O. Aldraihem, and A. Baz, “Vibration characteristics of metamaterial beams with periodic local resonances,” Journal of Vibration and Acoustics 136, 061012 (2014).
http://dx.doi.org/10.1115/1.4028453
26.
26.Y. Xiao, B. R. Mace, J. Wen, and X. Wen, “Formation and coupling of band gaps in a locally resonant elastic system comprising a string with attached resonators,” Physics Letters A 375, 14851491 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.02.044
27.
27.Y. Xiao, J. Wen, and X. Wen, “Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators,” New Journal of Physics 14, 033042 (2012).
http://dx.doi.org/10.1088/1367-2630/14/3/033042
28.
28.Y. Xiao, J. Wen, D. Yu, and X. Wen, “Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms,” Journal of Sound and Vibration 332, 867893 (2013).
http://dx.doi.org/10.1016/j.jsv.2012.09.035
29.
29.L. Liu and M. I. Hussein, “Wave motion in periodic flexural beams and characterization of the transition between bragg scattering and local resonance,” Journal of Applied Mechanics 79, 011003 (2012).
http://dx.doi.org/10.1115/1.4004592
30.
30.K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, 1991).
31.
31.J. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 1984).
32.
32.P. L. Bhatnagar, Nonlinear waves in one-dimensional dispersive systems (Clarendon Press Oxford, 1979), Vol. 142.
33.
33.R. W. Ogden, Non-linear elastic deformations (Courier Dover Publications, 1997).
34.
34.A. N. Norris, “Finite amplitude waves in solids,” in Nonlinear Acoustics, edited by M. F. Hamilton and D. T. Blackstock (Academic Press, San Diego, 1999), pp. 263277.
35.
35.A. Porubov, Amplification of nonlinear strain waves in solids (World Scientific, 2003).
36.
36.M. H. Abedinnasab and M. I. Hussein, “Wave dispersion under finite deformation,” Wave Motion 50, 374388 (2013).
http://dx.doi.org/10.1016/j.wavemoti.2012.10.008
37.
37.C. Daraio, V. Nesterenko, E. Herbold, and S. Jin, “Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals,” Physical Review E 73, 026610 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.026610
38.
38.R. K. Narisetti, M. J. Leamy, and M. Ruzzene, “A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures,” Journal of Vibration and Acoustics 132, 031001 (2010).
http://dx.doi.org/10.1115/1.4000775
39.
39.B. S. Lazarov and J. S. Jensen, “Low-frequency band gaps in chains with attached non-linear oscillators,” International Journal of Nonlinear Mechanics 42, 11861193 (2007).
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.09.007
40.
40.V. M. Rothos and A. F. Vakakis, “Dynamic interactions of traveling waves propagating in a linear chain with a local essentially nonlinear attachment,” Wave Motion 46, 174188 (2009).
http://dx.doi.org/10.1016/j.wavemoti.2008.10.004
41.
41.K. Manktelow, M. J. Leamy, and M. Ruzzene, “Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals,” Wave Motion (2013).
42.
42.M. I. Hussein, R. Khajehtourian, and M. H. Abedinnasab, “Finite-strain bloch wave propagation by the transfer matrix method,” arXiv:1412.2131v1 [cond-mat.mtrl-sci] (2014).
43.
43.M. I. Hussein, G. M. Hulbert, and R. A. Scott, “Dispersive elastodynamics of 1d banded materials and structures: analysis,” Journal of Sound and Vibration 289, 779806 (2006).
http://dx.doi.org/10.1016/j.jsv.2005.02.030
44.
44.F. Bloch, “Über die quantenmechanik der elektronen in kristallgittern,” Zeitschrift für physik 52, 555600 (1929).
http://dx.doi.org/10.1007/BF01339455
45.
45.D. Mead, “Wave propagation and natural modes in periodic systems: I. mono-coupled systems,” Journal of Sound and Vibration 40, 118 (1975).
http://dx.doi.org/10.1016/S0022-460X(75)80227-6
46.
46.J. Billingham and A. C. King, Wave motion (Cambridge University Press, 2000), p. 24.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905051
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905051
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905051
2014-12-22
2016-12-10

Abstract

We study wave dispersion in a one-dimensional nonlinear elastic metamaterial consisting of a thin rod with periodically attached local resonators. Our model is based on an exact finite-strain dispersion relation for a homogeneous solid, utilized in conjunction with the standard transfer matrix method for a periodic medium. The nonlinearity considered stems from large elastic deformation in the thin rod, whereas the metamaterial behavior is associated with the dynamics of the local resonators. We derive an approximate dispersion relation for this system and provide an analytical prediction of band-gap characteristics. The results demonstrate the effect of the nonlinearity on the characteristics of the band structure, including the size, location, and character of the band gaps. For example, large deformation alone may cause a pair of isolated Bragg-scattering and local-resonance band gaps to coalesce. We show that for a wave amplitude on the order of one-eighth of the unit cell size, the effect of the nonlinearity in the structure considered is no longer negligible when the unit-cell size is one-fourteenth of the wavelength or larger.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905051.html;jsessionid=lht1QIdqRd2YN_px5fxneRQX.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905051&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905051'
Right1,Right2,Right3,