Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. Wang, Z. Wang, Z. Zhang, Y. Yue, D. Li, R. Qiu, and C. Maple, Journal of Applied Physics 115, 233101 (2014).
2.A. Y. Vorobyev and C. Guo, Applied Physics Letters 92, 041914 (2008).
3.I. De Graeve, P. Laha, V. Goossens, R. Furneaux, D. Verwimp, E. Stijns, and H. Terryn, Surface and Coatings Technology 205, 4349 (2011).
4.G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt, Proceedings of the National Academy of Sciences of the United States of America 102, 16293 (2005).
5.K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Nature 405, 681 (2000).
6.C. Lv, P. Hao, Z. Yao, Y. Song, X. Zhang, and F. He, Applied Physics Letters 103, 021601 (2013).
7.L. Jiang, Y. Zhao, and J. Zhai, Angewandte Chemie 116, 4438 (2004).
8.J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, Proceedings of the National Academy of Sciences 100, 12576 (2003).
9.P. Vukusic, J. Sambles, and C. Lawrence, Nature 404, 457 (2000).
10.A. E. Seago, P. Brady, J.-P. Vigneron, and T. D. Schultz, Journal of the Royal Society Interface 6, S165 (2009).
11.A. R. Parker, V. L. Welch, D. Driver, and N. Martini, Nature 426, 786 (2003).
12.H. Y. Erbil, A. L. Demirel, Y. Avcı, and O. Mert, Science 299, 1377 (2003).
13.Q. Xie, J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, and C. C. Han, Advanced Materials 16, 302 (2004).
14.V. V. Ganbavle, U. K. H. Bangi, S. S. Latthe, S. A. Mahadik, and A. V. Rao, Surface and Coatings Technology 205, 5338 (2011).
15.I. Woodward, W. Schofield, V. Roucoules, and J. Badyal, Langmuir 19, 3432 (2003).
16.K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, M. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, and N. Park, Advanced Materials 24, 2375 (2012).
17.J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. Mochrie, and C. S. O’Hern, Advanced Materials 22, 2939 (2010).
18.J. Huang, X. Wang, and Z. L. Wang, Nano Letters 6, 2325 (2006).
19.X. J. Liu, Y. M. Liang, F. Zhou, and W. M. Liu, Soft Matter 8, 2070 (2012).
20.T. L. Sun and G. Y. Qing, Advanced Materials 23, H57 (2011).
21.D. Wu, S. Z. Wu, Q. D. Chen, Y. L. Zhang, J. Yao, X. Yao, L. G. Niu, J. N. Wang, L. Jiang, and H. B. Sun, Advanced Materials 23, 545 (2011).
22.S. Clark and D. Emmony, Physical Review B 40, 2031 (1989).
23.P. Bizi-Bandoki, S. Benayoun, S. Valette, B. Beaugiraud, and E. Audouard, Applied Surface Science 257, 5213 (2011).
24.D. Wu, Q.-D. Chen, H. Xia, J. Jiao, B.-B. Xu, X.-F. Lin, Y. Xu, and H.-B. Sun, Soft Matter 6, 263 (2010).
25.M. R. Bayati, S. Joshi, R. Molaei, R. J. Narayan, and J. Narayan, Journal of Applied Physics 113 (2013).
26.J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, Light: Science & Applications 3, e185 (2014).
27.A. R. Parker and H. E. Townley, Nature Nanotechnology 2, 347 (2007).
28.G. Li, J. Li, L. Yang, X. Li, Y. Hu, J. Chu, and W. Huang, Applied Surface Science 276, 203 (2013).
29.D. Qin, Y. Xia, and G. M. Whitesides, Nature protocols 5, 491 (2010).
30.D. Wu, J. N. Wang, S. Z. Wu, Q. D. Chen, S. Zhao, H. Zhang, H. B. Sun, and L. Jiang, Advanced Functional Materials 21, 2927 (2011).
31.S. H. Oh, J. G. Kim, C. S. Kim, D. S. Choi, S. Chang, and M. Y. Jeong, Applied Surface Science 257, 3817 (2011).
32.T. O. Yoon, H. J. Shin, S. C. Jeoung, and Y.-I. Park, Optics Express 16, 12715 (2008).
33.R. N. Wenzel, Industrial & Engineering Chemistry 28, 988 (1936).
34.A. Cassie and S. Baxter, Transactions of the Faraday Society 40, 546 (1944).
35.L. Feng, Y. A. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, Langmuir 24, 4114 (2008).
36.Y. C. Lin, S. H. Hsu, and Y. C. Chung, Surface and Coatings Technology 231, 501 (2013).
37.F. Chen, D. Zhang, Q. Yang, J. Yong, G. Du, J. Si, F. Yun, and X. Hou, ACS Applied Materials & Interfaces 5, 6777 (2013).
38.M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li, and L. Jiang, Advanced Materials 17, 1977 (2005).

Data & Media loading...


Article metrics loading...



Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS) surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd