Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. Reed, J. N. Randal, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, “Obseration of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Physical Review Letters 60, 535 (1988).
2.V. A. Egorov, G. E. Cirlin, N. K. Polyakov, V. N. Petrov, A. A. Tonkikh, B. V. Volovik, Y. G. Musikhin, A. E. Zhukov, A. F. Tsatsulnikov, and V. M. Ustinov, “1.3 − 1.4 μm photoluminescence emission from InAs/GaAs quantum dot multilayer structures grown on GaAs singular and vicinal substrates,” Nanotechnology 11, 323326 (2000).
3.H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Applied Physics Letters 78, 7981 (2001).
4.P. Bhattacharya, S. Ghosh, and A. Stiff-Roberts, “Quantum dot opto-electronic devices,” Annu. Rev. Mater. Res. 34, 140 (2004).
5.S. Bose, “Quantum communication through an unmodulated spin chain,” Physical Review Letters 91, 14 (2003).
6.Y. Li, O. Voskoboynikov, C. P. Lee, S. M. Sze, and O. Tretyak, “Electron energy state dependence on the shape and size of semiconductor quantum dots,” Journal of Applied Physics 90, 12 (2001).
7.I. N. Stranski and L. von Krastanow, Abhandlungen der Mathematisch-Naturwissenschentlichen Klasse IIb 146, 797810 (1938).
8.D. J. Kim, E. A. Everett, and H. Yang, “Annealing induced transition of flat strained InGaAs epilayers into three-dimensional islands,” Journal of Applied Physics 101, 106106 (2007).
9.D. J. Kim and H. Yang, “Shape control of InGaAs nanostructures on nominal GaAs(001): dashes and dots,” Nanotechnology 19, 475601 (2008).
10.K. N. Chauhan, D. M. Riffe, E. A. Everett, D. J. Kim, H. Yang, and F. K. Shen, “Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers,” Journal of Applied Physics 113, 203710 (2013).
11.O. G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, and F. Ernst, “Modified Stranski-Krastanov growth in stacked layers of self-assembled islands,” Applied Physics Letters 74, 12721274 (1999).
12.T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs,” Physical Review Letters 86, 23812384 (2001).
13.G. Biasiol, S. Heun, G. B. Golinelli, A. Locatelli, T. O. Mentes, F. Z. Guo, C. Hofer, C. Teichert, and L. Sorba, “Surface compositional gradients of InAs/GaAs quantum dots,” Applied Physical Letters 87, 223106 (2005).
14.T. V. Hakkarainen, J. Tommila, A. Schramm, A. Tukiainen, R. Ahorinta, M. Dumitrescu, and M. Guina, “Structural characterization of InAs quantum dot chains grown by molecular beam epitaxy on nanoimprint lithography patterned GaAs(100),” Nanotechnology 22, 295604 (2001).
15.E. Uccelli, M. Bichler, S. Nürnberger, G. Abstreiter, and A. F. i Morral, “Controlled synthesis of InAs wires, dot, and twin-dot array configurations by cleaved edge overgrowth,” Nanotechnology 19, 045303 (2008).
16.P. M. Petroff and S. P. DenBaars, “MBE and MOCVD growth and properties of self-assmebling quantum dot arrays in III-V semiconductor structures,” Superlattices and Microstructures 15, 1 (1994).
17.Z. M. Wang, K. Holmes, Y. I. Mazur, and G. Salamo, Applied Physics Letters 84, 1931 (2004).
18.T. V. Hakkarainen, A. Schramm, A. Tukiainen, R. Ahorinta, L. Toikkanen, and M. Guina, “Lateral ordering of InAs quantum dots on cross-hatch patterned GaInP,” Nanoscale Res. Lett. 5, 1892 (2010).
19.H. Yang, D. J. Kim, J. Colton, T. Park, D. Meyer, A. M. Jones, S. Thalman, D. Smith, K. Clark, and S. Brown, Growth and temperature dependent photoluminescence of InGaAs quantum dot chains. Applied Surface Science, available online 14 Jan 2014, ISSN 0169-4332,
20.J. P. McCaffrey, M. D. Robertson, S. Fafard, Z. R. Wasilewski, E. M. Griswold, and L. D. Madsen, “Determination of the size, shape, and composition of indium-flushed self-assembled quantum dots by transmission electron microscopy,” Journal of Applied Physics 88, 2272 (2000).
21.F. A. Stevie, C. B. Vartuli, L. A. Giannuzi, T. L. Shofner, S. R. Brown, B. Rossie, F. Hillion, R. H. Mills, M. Antonell, R. B. Irwin, and B. M. Purcell, “Application of focused ion beam lift-out specimon preparation to TEM, SEM, STEM, AES, and SIMS analysis,” Surface and Interface Analysis 31, 345351 (2001).
22.R. Anderson and S. J. Klepeis, “Combined tripod polishing and FIB method for preparing semiconductor plan view specimens,” MRS Proceedings 480, 187 (1997).
23.M. Jo, T. Mano, Y. Sakuma, and K. Sakoda, “Extremely high-density GaAs quantum dots grown by droplet epitaxy,” Applied Physics Letters 100, 212113 (2012).
24.D. Zhou, G. Sharma, S. F. Thomassen, T. W. Reenaas, and B. O. Fimland, “Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy,” Applied Physics Letters 96, 061913 (2010).
25.Y. Chen and J. Washburn, “Structural transition in large-lattice-mismatch heteroepitaxy,” Physical Review Letters 77, 4046 (1996).
26.J. Tersoff and R. M. Tromp, “Shape transition in growth of strained islands: spontaneous formation of quantum wires,” Physical Review Letters 70, 2782 (1993).
27.C. Priester and M. Lannoo, “Origin of self-assembled quantum dots in highly mismatched heteroepitaxy,” Physical Review Letters 75, 93 (1995).
28.H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, and W. Seifert, “Mean-field theory of quantum dot formation,” Physical Review Letters 79, 897 (1997).
29.A. Li, F. Liu, D. Y. Petrovykh, J.-L. Lin, J. Viernow, F. J. Himpsel, and M. G. Lagally, “Creation of quantum platelets via strain-controlled self-organization at steps,” Physical Review Letters 85, 5380 (2000).
30.P. Howe, E. C. Le Ru, E. Clarke, R. Murray, and T. S. Jones, “Quantification of segregation and strain effects in In As Ga As quantum dot growth,” Journal of Applied Physics 98, 113511 (2005).
31.N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, Jr., and C. K. Shih, “Nonuniform composition profile in In0.5Ga0.5As alloy quantum dots,” Physical Review Letters 84, 334337 (2000).
32.F. M. Ross, J. Tersoff, M. Reuter, F. K. Legoues, and R. M. Tromp, “In situ transmission electron microscopy observations of the formation of self-assembled Ge islands on Si,” Microscopy Research and Technique 42, 281294 (1998).<281::AID-JEMT7>3.0.CO;2-T
33.L. Ke, Z. Qing, Z. Xun, G. Xiang, L. Zi-Jiang, W. Ji-Hong, H. Ming-Zhe, and D. Zhao, “Ripening of single-layer InGaAs islands on GaAs (001),” Chin. Phys. B 22, 026801 (2013).

Data & Media loading...


Article metrics loading...



Self-assembled InGaAs quantum dot chains were grown using a modified Stranski-Krastanov method in which the InGaAs layer is deposited under a low growth temperature and high arsenic overpressure, which suppresses the formation of dots until a later annealing process. The dots are capped with a 100 nm GaAs layer. Three samples, having three different annealing temperatures of 460°C, 480°C, and 500°C, were studied by transmission electron microscopy. Results indicate two distinct types of dot formation processes: dots in the 460°C and 480°C samples form from platelet precursors in a one-to-one ratio whereas the dots in the sample annealed at 500°C form through the strain-driven self-assembly process, and then grow larger via an additional Ostwald ripening process whereby dots grow into larger dots at the expense of smaller seed islands. There are consequently significant morphological differences between the two types of dots, which explain many of the previously-reported differences in optical properties. Moreover, we also report evidence of indium segregation within the dots, with little or no indium intermixing between the dots and the surrounding GaAs barrier.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd