Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905263
1.
1.A. Thess, R. Lee, P. Nikovaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. Hee Lee, S. Gon Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).
http://dx.doi.org/10.1126/science.273.5274.483
2.
2.Science and Application of Nanotubes, edited by D. Tomanek and R. J. Enbody (Kluwer Academic/Plennum, New York, 2000);
2.C. Dekker, Physics Today 22 (1999);
http://dx.doi.org/10.1063/1.882658
2.P. Avouris, J. Appenzeller, R Martel, and S. J. Wind, Proceedings of the IEEE 91(11), 1772 (2003).
http://dx.doi.org/10.1109/JPROC.2003.818338
3.
3.J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391(6662), 59 (1998).
http://dx.doi.org/10.1038/34139
4.
4.P. Ajayan and Zhou O., “Carbon Nanotubes,” Topics Appl. Phys. 80, 391 (2001).
http://dx.doi.org/10.1007/3-540-39947-X_14
5.
5.R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, Covent Garden, London, 2003).
6.
6.M. S. Dresselhaus and P. Avouris, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, edited by C. E. Ascheron, H. J. Kolsch, and W. Skolaut (Springer, Verlag Berlin Heidelberg New York, 2001), Vol. 80, p. 1.
7.
7.C. Guerret-Plecourt, Y. Le Bouar, A. Loiseau, and H. Pascard, Nature (London) 372(22), 761 (1994).
http://dx.doi.org/10.1038/372761a0
8.
8.P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60(10), 1025 (1997);
http://dx.doi.org/10.1088/0034-4885/60/10/001
8.C. H. Kiang, W. A. Goddard, R. Beyers, J. R. Salem, and D. Bethune, J. Phys. Chem. Solids 57(1), 35 (1996).
http://dx.doi.org/10.1016/0022-3697(95)00087-9
9.
9.W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270(5239), 1179 (1995);
http://dx.doi.org/10.1126/science.270.5239.1179
9.W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Applied Physics Letters 75(6), 873 (1999).
http://dx.doi.org/10.1063/1.124541
10.
10.S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Georliga, and C. Dekker, Nature 6624, 474 (1997).
http://dx.doi.org/10.1038/386474a0
11.
11.K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, Nano Letters 3(6), 727 (2003).
http://dx.doi.org/10.1021/nl034139u
12.
12.Y. Ye, C. Anh, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Applied Physics Letters 74, 2307 (1999);
http://dx.doi.org/10.1063/1.123833
12.P. M. Ajayan, J.-C. Charlier, and A. G. Rinzler, Proceedings of the National Academy of Sciences of the United States of America 96(25), 14199 (1999);
http://dx.doi.org/10.1073/pnas.96.25.14199
12.A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Letters to Nature 386, 377 (1997).
http://dx.doi.org/10.1038/386377a0
13.
13.A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 5545, 1317 (2001);
http://dx.doi.org/10.1126/science.1065824
13.H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science 5527, 76 (2001).
http://dx.doi.org/10.1126/science.1061797
14.
14.L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, Nature Materials 3, 673 (2004);
http://dx.doi.org/10.1038/nmat1216
14.X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Nano Letters 9(9), 3137 (2009).
http://dx.doi.org/10.1021/nl901260b
15.
15.D. Bakowies and W. Thiel, J. Am. Chem. Soc. 113, 3704 (1991);
http://dx.doi.org/10.1021/ja00010a012
15.J. J. Belbruno, Z Tang, R. Smith, and S. Hobday, Molecular Physics 99(11), 957 (2001);
http://dx.doi.org/10.1080/00268970110040219
15.S. Iijima, Nature (London) 354(6348), 56 (1991).
http://dx.doi.org/10.1038/354056a0
16.
16.K. R. Rodriguez, S. M. Williams, M. A. Young, S. Teeters-Kennedy, J. M. Heer, and J. V. Coe, The Journal of Chemical Physics 125 (2006).
http://dx.doi.org/10.1063/1.2397680
17.
17.K. R. Rodriguez, M. S. thesis, The Ohio State University, 2005.
18.
18.E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Applied Physics A 68(3), 287 (1999).
http://dx.doi.org/10.1007/s003390050890
19.
19.H. F. Bettinger, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc. 123, 12849 (2001).
http://dx.doi.org/10.1021/ja010977j
20.
20.M. F. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin, and A. M. Mebel, Chemical Physics Letters 407, 266 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.03.088
21.
21.J. Cioslowski, N. Rao, and D. Moncrieff, J. Am. Chem. Soc. 124(28), 8485 (2002);
http://dx.doi.org/10.1021/ja0126879
21.C. Sun, G. Lu, and H. Cheng, J. Nanopart Res 10, 1037 (2008);
http://dx.doi.org/10.1007/s11051-007-9335-2
21.G. Sun, J. Kurti, M. Kertesz, and R. Baughman, H., J. Phys. Chem. B 107(29), 6924 (2003);
http://dx.doi.org/10.1021/jp022629p
21.S. L. Lair, W. C. Herndon, and L. E. Murr, Journal of Material Science 42, 1819 (2007);
http://dx.doi.org/10.1007/s10853-006-0815-z
21.J. W. Mintmire and C. T. White, Carbon 33(7), 893 (1995).
http://dx.doi.org/10.1016/0008-6223(95)00018-9
22.
22.J. J. P. Stewart, Journal of Computational Chemistry 10(2), 221 (1989);
http://dx.doi.org/10.1002/jcc.540100209
22.J. J. P. Stewart, Journal of Computational Chemistry 10(2), 209 (1989).
http://dx.doi.org/10.1002/jcc.540100208
23.
23.K. Kato and S. Saito, Physica E 43, 669 (2011).
http://dx.doi.org/10.1016/j.physe.2010.07.025
24.
24.K. Kato, T. Koretusne, and S. Saito, Physical Review B 85(11), 115448 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115448
25.
25.H. Y. Afeefy, J. F. Liebman, and S. E. Stein, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 2005), http://webbook.nist.gov.
26.
26.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.11.2 (Gaussian, Inc., Pittsburgh PA, 2001).
27.
27.B. Kirtman, Chemical Physics Letters 143(1), 81 (1988);
http://dx.doi.org/10.1016/0009-2614(88)87015-5
27.J. Cioslowski and M. B. Lepetit, Journal of Chemical Physics 95(5), 3536 (1991).
http://dx.doi.org/10.1063/1.460856
28.
28.S. M. Williams, SWNT_builder.exe (2005).
29.
29.S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and B. Weisman R., JACS Communication 125(37), 11186 (2003).
http://dx.doi.org/10.1021/ja036622c
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4905263 for PM3 calculations of the enthalpies of formation, zero point energies, thermal enthalpic correction from equilibrium, and thermal free energy correction from equilibrium and the analytical linear fit parameters of enthalplic and Gibbs Free atomic binding energy values on a per carbon basis vs. the reciprocal of the number of carbon atoms for armchairs, zig-zags, and several Chiral (n>m) and (n<m) single walled carbon nanotubes.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905263
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905263
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905263
2014-12-29
2016-09-29

Abstract

The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (), and chiral ()). Bulk values of these thermodynamic potentials were obtained using a previously demonstrated robust method based on semi-empirical PM3 calculations and an extrapolated cluster approach. Those values were used to study the relationship between the thermodynamic potentials and the diameter of the nanotube. Results of this study led to the proposal of a single equation for the thermodynamical potential of or (assembly of nanotubes from atoms) versus the chiral vector indexes and for any given nanotube. The equations show a good level of accuracy in predicting thermodynamic potentials for practical applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905263.html;jsessionid=pv45rYqKcEKQ_RPG-ItvvfMc.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905263&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905263&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905263'
Right1,Right2,Right3,