Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Thess, R. Lee, P. Nikovaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. Hee Lee, S. Gon Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).
2.Science and Application of Nanotubes, edited by D. Tomanek and R. J. Enbody (Kluwer Academic/Plennum, New York, 2000);
2.C. Dekker, Physics Today 22 (1999);
2.P. Avouris, J. Appenzeller, R Martel, and S. J. Wind, Proceedings of the IEEE 91(11), 1772 (2003).
3.J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391(6662), 59 (1998).
4.P. Ajayan and Zhou O., “Carbon Nanotubes,” Topics Appl. Phys. 80, 391 (2001).
5.R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, Covent Garden, London, 2003).
6.M. S. Dresselhaus and P. Avouris, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, edited by C. E. Ascheron, H. J. Kolsch, and W. Skolaut (Springer, Verlag Berlin Heidelberg New York, 2001), Vol. 80, p. 1.
7.C. Guerret-Plecourt, Y. Le Bouar, A. Loiseau, and H. Pascard, Nature (London) 372(22), 761 (1994).
8.P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60(10), 1025 (1997);
8.C. H. Kiang, W. A. Goddard, R. Beyers, J. R. Salem, and D. Bethune, J. Phys. Chem. Solids 57(1), 35 (1996).
9.W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270(5239), 1179 (1995);
9.W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Applied Physics Letters 75(6), 873 (1999).
10.S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Georliga, and C. Dekker, Nature 6624, 474 (1997).
11.K. Besteman, J. O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, Nano Letters 3(6), 727 (2003).
12.Y. Ye, C. Anh, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith, and R. E. Smalley, Applied Physics Letters 74, 2307 (1999);
12.P. M. Ajayan, J.-C. Charlier, and A. G. Rinzler, Proceedings of the National Academy of Sciences of the United States of America 96(25), 14199 (1999);
12.A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Letters to Nature 386, 377 (1997).
13.A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 5545, 1317 (2001);
13.H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science 5527, 76 (2001).
14.L. X. Zheng, M. J. O’Connell, S. K. Doorn, X. Z. Liao, Y. H. Zhao, E. A. Akhadov, M. A. Hoffbauer, B. J. Roop, Q. X. Jia, R. C. Dye, D. E. Peterson, S. M. Huang, J. Liu, and Y. T. Zhu, Nature Materials 3, 673 (2004);
14.X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Nano Letters 9(9), 3137 (2009).
15.D. Bakowies and W. Thiel, J. Am. Chem. Soc. 113, 3704 (1991);
15.J. J. Belbruno, Z Tang, R. Smith, and S. Hobday, Molecular Physics 99(11), 957 (2001);
15.S. Iijima, Nature (London) 354(6348), 56 (1991).
16.K. R. Rodriguez, S. M. Williams, M. A. Young, S. Teeters-Kennedy, J. M. Heer, and J. V. Coe, The Journal of Chemical Physics 125 (2006).
17.K. R. Rodriguez, M. S. thesis, The Ohio State University, 2005.
18.E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Applied Physics A 68(3), 287 (1999).
19.H. F. Bettinger, K. N. Kudin, and G. E. Scuseria, J. Am. Chem. Soc. 123, 12849 (2001).
20.M. F. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin, and A. M. Mebel, Chemical Physics Letters 407, 266 (2005).
21.J. Cioslowski, N. Rao, and D. Moncrieff, J. Am. Chem. Soc. 124(28), 8485 (2002);
21.C. Sun, G. Lu, and H. Cheng, J. Nanopart Res 10, 1037 (2008);
21.G. Sun, J. Kurti, M. Kertesz, and R. Baughman, H., J. Phys. Chem. B 107(29), 6924 (2003);
21.S. L. Lair, W. C. Herndon, and L. E. Murr, Journal of Material Science 42, 1819 (2007);
21.J. W. Mintmire and C. T. White, Carbon 33(7), 893 (1995).
22.J. J. P. Stewart, Journal of Computational Chemistry 10(2), 221 (1989);
22.J. J. P. Stewart, Journal of Computational Chemistry 10(2), 209 (1989).
23.K. Kato and S. Saito, Physica E 43, 669 (2011).
24.K. Kato, T. Koretusne, and S. Saito, Physical Review B 85(11), 115448 (2012).
25.H. Y. Afeefy, J. F. Liebman, and S. E. Stein, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 2005),
26.M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.11.2 (Gaussian, Inc., Pittsburgh PA, 2001).
27.B. Kirtman, Chemical Physics Letters 143(1), 81 (1988);
27.J. Cioslowski and M. B. Lepetit, Journal of Chemical Physics 95(5), 3536 (1991).
28.S. M. Williams, SWNT_builder.exe (2005).
29.S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and B. Weisman R., JACS Communication 125(37), 11186 (2003).
30.See supplementary material at for PM3 calculations of the enthalpies of formation, zero point energies, thermal enthalpic correction from equilibrium, and thermal free energy correction from equilibrium and the analytical linear fit parameters of enthalplic and Gibbs Free atomic binding energy values on a per carbon basis vs. the reciprocal of the number of carbon atoms for armchairs, zig-zags, and several Chiral (n>m) and (n<m) single walled carbon nanotubes.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (), and chiral ()). Bulk values of these thermodynamic potentials were obtained using a previously demonstrated robust method based on semi-empirical PM3 calculations and an extrapolated cluster approach. Those values were used to study the relationship between the thermodynamic potentials and the diameter of the nanotube. Results of this study led to the proposal of a single equation for the thermodynamical potential of or (assembly of nanotubes from atoms) versus the chiral vector indexes and for any given nanotube. The equations show a good level of accuracy in predicting thermodynamic potentials for practical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd