Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905265
1.
1.N. Setter, Piezoelectric Materials in Devices (Setter, N., Ceramic Laboratory, EPFL, Lausanne, Switzerland, 2002).
2.
2.B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press Inc, London and NewYork, 1971), Vol. 3.
3.
3.B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S. E. Park, Appl. Phys. Lett. 74, 2059 (1999).
http://dx.doi.org/10.1063/1.123756
4.
4.B. Noheda, D. E. Cox, G. Shirane, R. Guo, B. Jones, and L. E. Cross, Phys. Rev. B 63, 014103 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.014103
5.
5.R. Schierholz and H. Fuess, Phys. Rev. B 84, 064122 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.064122
6.
6.K. Kakegawa, O. Matsunaga, T. Kato, and Y. Sasaki, J. Am. Ceram. Soc. 78, 1071 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08439.x
7.
7.A. P. Wilkinson, J. Xu, S. Pattanaik, and S. J. L. Billinge, Chem. Mater. 10, 3611 (1998).
http://dx.doi.org/10.1021/cm980368j
8.
8.M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 13 (1989).
http://dx.doi.org/10.1080/00150198908221436
9.
9.L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5427
10.
10.D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.094108
11.
11.I. A. Sergienko, Y. M. Gufan, and S. Urazhdin, Phys. Rev. B 65, 144104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144104
12.
12.N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, and R. Waser, Phys. Rev. B 67, 054107 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.054107
13.
13.S. H. Oh and H. M. Jang, Appl. Phys. Lett. 72, 1457 (1998).
http://dx.doi.org/10.1063/1.120609
14.
14.S. Hoon Oh and H. M. Jang, Phys. Rev. B 63, 132101 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.132101
15.
15.S. Hoon Oh and H. M. Jang, Phys. Rev. B 62, 14757 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.14757
16.
16.N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1988
17.
17.N. A. Pertsev, Z. G. Zembilgotov, and A. K. Tagantsev, Ferroelectrics 223, 79 (1999).
http://dx.doi.org/10.1080/00150199908260556
18.
18.V. B. Shirokov, Y. I. Yuzyuk, B. Dkhil, and V. V. Lemanov, Phys. Rev. B 75, 224116 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.224116
19.
19.V. G. Kukhar, N. A. Pertsev, H. Kohlstedt, and R. Waser, Phys. Rev. B 73, 214103 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.214103
20.
20.B. Voelker, P. Marton, C. Elsaesser, and M. Kamlah, Continuum Mech. Thermodyn. 23, 435 (2011).
http://dx.doi.org/10.1007/s00161-011-0188-7
21.
21.A. Tagantsev, K. Vaideeswaran, S. Vakhrushev, A. Filimonov, R. Burkovsky, A. Shaganov, D. Andronikova, A. Rudskoy, A. Baron, and H. Uchiyama, Nature communications 4 (2013).
http://dx.doi.org/10.1038/ncomms3229
22.
22.A. Kvasov and A. K. Tagantsev, Phys. Rev. B 87, 184101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184101
23.
23.V. Koukhar, N. Pertsev, and R. Waser, Phys. Rev. B 64, 214103 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214103
24.
24.M. Dekkers, M. D. Nguyen, R. Steenwelle, P. M. Te Riele, D. H. Blank, and G. Rijnders, Appl. Phys. Lett. 95, 012902 (2009).
http://dx.doi.org/10.1063/1.3163057
25.
25.A. Zembilgotov, N. Pertsev, U. Böttger, and R. Waser, Appl. Phys. Lett. 86, 052903 (2005).
http://dx.doi.org/10.1063/1.1855389
26.
26.T. Kiguchi, N. Wakiya, K. Shinozaki, and N. Mizutani, Microelectron. Eng. 66, 708 (2003).
http://dx.doi.org/10.1016/S0167-9317(02)00988-7
27.
27.R. Desfeux, C. Legrand, A. Da Costa, D. Chateigner, R. Bouregba, and G. Poullain, Surf. Sci. 600, 219 (2006).
http://dx.doi.org/10.1016/j.susc.2005.09.053
28.
28.N. A. Pertsev and H. Kohlstedt, Phys. Rev. Lett. 98, 257603 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.257603
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905265
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905265
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905265
2014-12-29
2016-09-27

Abstract

We report the qualitative study of the influence of both elastic compliances and higher order terms of Landau free energy potential on the phase diagram of Pb(ZrTi)O thin films by using a single domain Landau theory. Although the impact of elastic compliances and higher order terms of the Landau free energy potential on the phase diagram of ferroelectric thin films are known, the sensitivity of the phase diagram of PZT thin film on these parameters have not been reported. It is demonstrated that, while values of elastic compliances affect the positions of the phase boundaries including phase transition temperature of the cubic phase; higher order terms can potentially introduce an a1a2-phase previously predicted in PbTiO phase diagram.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905265.html;jsessionid=6p6qSMmRa_l7abvPE8fxHOMi.x-aip-live-03?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905265&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905265&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905265'
Right1,Right2,Right3,