Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905380
1.
1. The origin of the lower dimensional systems dates back to 1957 when Schrieffer [J.R. Schrieffer, in: R.H. Kingston (Ed.), Semiconductor Surface Physics (University of Pennsylvania Press, Philadelphia, PA, 1957) p. 55] anticipated the quantization of energy levels in inversion layers. But the two-dimensional (2D) nature of electron gas – when only the lowest electric subband is occupied – was first confirmed experimentally by Fowler et al. [A.B. Fowler, F.F. Fang, W.E. Howard, P.J. Stiles, Phys. Rev. Lett. 16, 901 (1966)] in 1966.
2.
2.For an extensive review of electronic, optical, and transport phenomena in the systems of reduced dimensions such as quantum wells, quantum wires, quantum dots, and (electrically/magnetically) modulated quantum systems, see, M.S. Kushwaha, Surf. Sci. Rep. 41, 1 (2001).
http://dx.doi.org/10.1016/S0167-5729(00)00007-8
3.
3.L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).
http://dx.doi.org/10.1147/rd.141.0061
4.
4.H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).
http://dx.doi.org/10.1143/JJAP.19.L735
5.
5.Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
http://dx.doi.org/10.1063/1.92959
6.
6.A. L. Efros and A. L. Efros, Sov. Phys.: Semiconductors 16, 772 (1982).
7.
7.L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
http://dx.doi.org/10.1063/1.447218
8.
8.L. Banyai and S. W. Koch, Phys. Rev. Lett. 57, 2722 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2722
9.
9.M. L. Steigerwald and L. E. Brus, Annu. Rev. Mater. Sci. 19, 471 (1989).
http://dx.doi.org/10.1146/annurev.ms.19.080189.002351
10.
10.Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).
http://dx.doi.org/10.1021/j100155a009
11.
11.L. M. Ramaniah and S. V. Nair, Phys. Rev. B 47, 7132 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.7132
12.
12.A. P. Alivisatos, Science 271, 933 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
13.
13.Zh. Xiao, J. Appl. Phys. 86, 4509 (1999).
http://dx.doi.org/10.1063/1.371394
14.
14.Daniel Gammon, Nature 405, 899 (2000).
http://dx.doi.org/10.1038/35016189
15.
15.M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forshel, Nature 405, 923 (2000).
http://dx.doi.org/10.1038/35016020
16.
16.R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature 405, 926 (2000).
http://dx.doi.org/10.1038/35016030
17.
17.J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rossler, Phys. Rev. B 65, 115305 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115305
18.
18.R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.186601
19.
19.M. Tadic and F. M. Peeters, Phys. Rev. B 71, 1125342 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125342
20.
20.C. Simserides, A. Zora, and G. Triberis, Phys. Rev. B 73, 155313 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155313
21.
21.J. Z. Zhang and I. Galbraith, Phys. Rev. B 77, 205319 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205319
22.
22.J. W. Luo, A. Franceschetti, and A. Zunger, Phys. Rev. B 78, 035306 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035306
23.
23.T. Schwarzl, E. Kaufmann, G. Springholz, K. Koike, T. Hotei, M. Yano, and W. Heiss, Phys. Rev. B 78, 165320 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.165320
24.
24.Th. Puangmali, M. Califano, and P. Harrison, Phys. Rev. B 78, 245104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245104
25.
25.M. B. Harouni, R. Roknizadeh, and M. H. Naderi, Phys. Rev. B 79, 165304 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165304
26.
26.J. L. Movilla, A. Ballester, and J. Planelles, Phys. Rev. B 79, 195319 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195319
27.
27.S. V. Goupalov, Phys. Rev. B 79, 233305 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233305
28.
28.C. L. Weng and Y. C. Tsai, Phys. Rev. B 79, 245327 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245327
29.
29.P. Horodyska, P. Nemec, D. Sprinzl, P. Maly, V. N. Gladilin, and J. T. Devreese, Phys. Rev. B 81, 045301 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045301
30.
30.M. Genkin and E. Lindroth, Phys. Rev. B 81, 125315 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.125315
31.
31.L. Silvestri and V. M. Agranovich, Phys. Rev. B 81, 205302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205302
32.
32.Th. G. Pedersen, Phys. Rev. B 81, 233406 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233406
33.
33.C. Y. Lin and Y. K. Ho, Phys. Rev. B 84, 023407 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.023407
34.
34.S. Wu and L. Wan, J. Appl. Phys. 111, 063711 (2012).
http://dx.doi.org/10.1063/1.3695454
35.
35.H. P. Paudel and M. N. Leuenberger, Phys. Rev. B 88, 085316 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.085316
36.
36.W. Kohn, Phys. Rev. 123, 1242 (1961).
http://dx.doi.org/10.1103/PhysRev.123.1242
37.
37.F. M. Peeters, Phys. Rev. B 42, 1486 (1990);
http://dx.doi.org/10.1103/PhysRevB.42.1486
37.P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.108
38.
38.M. S. Kushwaha, Phys. Rev. B 74, 045304 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.045304
39.
39.M. S. Kushwaha, Phys. Rev. B 76, 245315 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245315
40.
40.M. S. Kushwaha, J. Appl. Phys. 104, 083714 (2008).
http://dx.doi.org/10.1063/1.3003086
41.
41.D. Pines, The Many-Body Problem (Benjamin, New York, 1961);
41.A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971);
41.G. D. Mahan, Many Particle Physics (Plenum, New York, 1981).
42.
42.V. Fock, Z. Phys. 47, 446 (1928).
http://dx.doi.org/10.1007/BF01390750
43.
43.C. G. Darwin, Proc. Cambridge Philos. Soc. 27, 86 (1930).
http://dx.doi.org/10.1017/S0305004100009373
44.
44.R. B. Dingle, Proc. Roy. Soc. (London) A 211, 500 (1952).
http://dx.doi.org/10.1098/rspa.1952.0055
45.
45.L. J. Slater, Confluent Hypergeometric functions (Cambridge, London, 1960).
46.
46.E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea, New York, 1955).
47.
47.H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Academic Press, New York, 1957); See, e.g., the Appendix on Spherical Harmonics.
48.
48.N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.2362
49.
49.M. S. Kushwaha and F. Garcia-Moliner, Phys. Lett. A 205, 217 (1995).
http://dx.doi.org/10.1016/0375-9601(95)00566-L
50.
50.J. D. Jackson, Classical Electrodynamics (John Wily, New York, 1975).
51.
51.R. C. Ashoori, Nature 379, 413 (1996);
http://dx.doi.org/10.1038/379413a0
51.R. J. Warburton et al., Nature 405, 926 (2000).
http://dx.doi.org/10.1038/35016030
52.
52.F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.605
53.
53.J. K. Jain, Composite Fermions (Cambridge, New York, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905380
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905380
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905380
2014-12-30
2016-12-11

Abstract

Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of elementary excitations such as plasmons to rather than space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905380.html;jsessionid=tekTKyVKOZGSUda3QwH0GhHi.x-aip-live-02?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905380&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905380&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905380'
Right1,Right2,Right3,