Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Raoux, R. M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y.-C. Chen, Y.-H. Shih, E.-K. Lai, and M.-H. Lee, Microelect. Eng. 85, 2330 (2008).
2.D. Yu, J. Wu, Q. Gu, and H. Park, J. Am.Chem.Soc. 128, 8148 (2006).
3.S.-H. Lee, D.-K. Ko, Y. Jung, and R. Agarwal, Appl. Phys. Lett. 89, 223116 (2006).
4.B. Yu, S. Ju, X. Sun, G. Ng, T. D. Nguyen, M. Meyyappan, and D. B. Janes, Appl. Phys. Lett. 91, 133119 (2007).
5.B. Jin, D. Kang, J. Kim, M. Meyyappan, and J.-S. Lee, J. Appl. Phys. 113, 164303 (2013).
6.C.-K. Baek, D. Kang, J. Kim, B. Jin, T. Rim, S. Park, M. Meyyappan, Y.-H. Jeong, and J.-S. Lee, Solid-State Electronics 80, 10 (2013).
7.S. Xuhui, Y. Bin, G. Ng, M. Meyyappan, J. Sanghyun, and D. B. Janes, IEEE Trans. Electron Devices, IEEE Transactions on 55, 3131 (2008).
8.X. Sun, B. Yu, and M. Meyyappan, Appl. Phys. Lett. 90, 183116 (2007).
9.S. H. Lee, Y. Jung, and R. Agarwal, Nature Nanotechnol. 2, 626 (2007).
10.I. V. Karpov, M. Mitra, D. Kau, G. Spadini, Y. A. Kryukov, and V. G. Karpov, J. Appl. Phys. 102, 124503 (2007).
11.S. Lavizzari, D. Ielmini, D. Sharma, and A. L. Lacaita, IEEE Trans. Electron Devices 56, 1078 (2009).
12.A. Redaelli, A. Pirovano, A. Locatelli, and F. Pellizzer, NVSMW/ICMTD (2008), p. 39.
13.W. K. Njoroge, H.-W. Wöltgens, and M. Wuttig, J. Vac. Sci. Technol. A 20, 230 (2002).
14.J. Kalb, F. Spaepen, T. P. Leervad Pedersen, and M. Wuttig, J. Appl. Phys. 94, 4908 (2003).
15.M. Mitra, Y. Jung, D. S. Gianola, and R. Agarwal, Appl. Phys. Lett. 96, 222111 (2010).
16.S. Kim, B. Lee, M. Asheghi, F. Hurkx, J. P. Reifenberg, K. E. Goodson, and H. S. P. Wong, IEEE Trans. Electron Devices 58, 584 (2011).
17.M. K. El-Mansy, M. M. El-Zaidia, E. Abo El-Hassan, and A. A. Ammar, Nuovo Cimento D 17, 1121 (1995).
18.M. Rizzi, A. Spessot, P. Fantini, and D. Ielmini, Appl. Phys. Lett. 99, 223513 (2011).
19.S. L. Wang, C. Y. Chen, M. K. Hsieh, W. C. Lee, A. H. Kung, and L. H. Peng, Appl. Phys. Lett. 94, 113503 (2009).
20.S.-L. Wang and L.-H. Peng, J. Appl. Phys. 108, 084503 (2010).
21.B. Jin, T. Lim, S. Ju, M. I. Latypov, H. S. Kim, M. Meyyappan, and J.-S. Lee, Nanotechnology 25, 055205 (2014).
22.B. Jin, T. Lim, S. Ju, M. I. Latypov, D.-H. Pi, H. Seop Kim, M. Meyyappan, and J.-S. Lee, Appl. Phys. Lett. 104, 103510 (2014).
23.B. Byoung-Jae, K. SangBum, Z. Yuan, K. Youngkuk, B. In-Gyu, P. Soonoh, Y. In-Seok, C. Siyoung, M. Joo-Tae, H. S. P. Wong, and K. Kinam, presented at the Electron Devices Meeting (IEDM), 2009 IEEE International, 2009 (unpublished).
24.J. Luckas, A. Piarristeguy, G. Bruns, P. Jost, S. Grothe, R. M. Schmidt, C. Longeaud, and M. Wuttig, J. Appl. Phys. 113, 023704 (2013).
25.S. Song, Z. Song, L. Wu, B. Liu, and S. Feng, J. Appl. Phys. 109, 034503 (2011).
26.Y. S. Park, S. O. Ryu, K. J. Choi, S. Y. Lee, S. M. Yoon, and B. G. Yu, J. Mater. Science: Mater. Electronics 18, 1079 (2007).
27.Y. S. Park, J. W. Lim, W. S. Yang, S. Y. Lee, S. M. Yoon, and B. G. Yu, ECS Trans. 11, 245 (2007).
28.S. Braga, A. Cabrini, and G. Torelli, Appl. Phys. Lett. 94, 092112 (2009).
29.I.-M. Park, J.-K. Jung, S.-O. Ryu, K.-J. Choi, B.-G. Yu, Y.-B. Park, S. M. Han, and Y.-C. Joo, Thin Solid Films 517, 848 (2008).
30.J. F. Shackelford and W. Alexander, CRC Materials Science and Engineering Handbook, third ed. (Taylor & Francis, 2010).

Data & Media loading...


Article metrics loading...



Phase change random access memory (PCRAM) devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material () and the encapsulating layer material () according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM) while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd