Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/12/10.1063/1.4905452
1.
1.R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic, 2005 IEEE VLSI-TSA International Symposium on VLSI Technology (Hsinchu, Taiwan, 2005), p. 13.
2.
2.G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, IEEE Electron Device Lett. 29, 1094 (2008).
http://dx.doi.org/10.1109/LED.2008.2002945
3.
3.R. Chau, S. Datta, M. Doczy, B. Doyle, J. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, IEEE Trans. on Nanotechnol. 4, 153 (2005).
http://dx.doi.org/10.1109/TNANO.2004.842073
4.
4.K. J. Kuhn, IEEE Trans. on Electron Devices 59, 1813 (Ecs Solid State Letters2012).
http://dx.doi.org/10.1109/TED.2012.2193129
5.
5.B. R. Bennett, T. F. Chick, M. G. Ancona, and J. B. Boos, Solid-State Electronics 79, 274 (2013).
http://dx.doi.org/10.1016/j.sse.2012.08.004
6.
6.B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, Solid-State Electronics 49, 1875 (2005).
http://dx.doi.org/10.1016/j.sse.2005.09.008
7.
7.A. Nainani, T. Irisawa, Z. Yuan, B. R. Bennett, J. B. Boos, Y. Nishi, and K. C. Saraswat, IEEE Trans. on Electron Devices 58, 3407 (2011).
http://dx.doi.org/10.1109/TED.2011.2162732
8.
8.M. Xu, R. S. Wang, and P. D. Ye, IEEE Electron Device Lett. 32, 883 (2011).
http://dx.doi.org/10.1109/LED.2011.2143689
9.
9.C. Merckling, X. Sun, A. Alian, G. Brammertz, V. V. Afanas’ev, T. Y. Hoffmann, M. Heyns, M. Caymax, and J. Dekoster, J. Appl. Phys. 109, 073719 (2011).
http://dx.doi.org/10.1063/1.3569618
10.
10.K. K. Bhuwalka, S. W. Wang, O. C. Noriega, M. C. Holland, R. Contreras-Guerrero, M. Edirisooriya, G. Doornbos, C. H. Wang, T. H. Myers, R. Droopad, M. Passlack, and C. H. Diaz, IEEE Electron Device Lett. 35, 21 (2014).
http://dx.doi.org/10.1109/LED.2013.2289359
11.
11.R. L. Chu, W. J. Hsueh, T. H. Chiang, W. C. Lee, H. Y. Lin, T. D. Lin, G. J. Brown, J. I. Chyi, T. S. Huang, T. W. Pi, J. R. Kwo, and M. Hong, Appl. Phys. Express 6, 121201 (2013).
http://dx.doi.org/10.7567/APEX.6.121201
12.
12.V. Tokranov, S. Madisetti, M. Yakimov, P. Nagaiah, N. Faleev, and S. Oktyabrsky, J. of Crystal Growth 378, 631 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.105
13.
13.P. Nagaiah, V. Tokranov, M. Yakimov, S. Madisetti, A Greene, S. Novak, R. Moore, H. Bakhru, and S. Oktyabrsky, ECS Trans. 41, 223 (2011).
http://dx.doi.org/10.1149/1.3633038
14.
14.N. Miyata, A. Ohtake, M. Ichikawa, T. Mori, and T. Yasuda, Appl. Phys. Lett. 104, 232104 (2014).
http://dx.doi.org/10.1063/1.4882643
15.
15.A. Ali, H. S. Madan, A. P. Kirk, D. A. Zhao, D. A. Mourey, M. K. Hudait, R. M. Wallace, T. N. Jackson, B. R. Bennett, J. B. Boos, and S. Datta, Appl. Phys. Lett. 97, 143502 (2010).
http://dx.doi.org/10.1063/1.3492847
16.
16.A. Ali, H. Madan, A. Agrawal, I. Ramirez, R. Misra, J. B. Boos, B. R. Bennett, J. Lindemuth, and S. Datta, IEEE Electron Device Lett. 32, 1689 (2011).
http://dx.doi.org/10.1109/LED.2011.2170550
17.
17.L. B. Ruppalt, E. R. Cleveland, J. G. Champlain, S. M. Prokes, J. B. Boos, D. Park, and B. R. Bennett, Appl. Phys. Lett. 101, 231601 (2012).
http://dx.doi.org/10.1063/1.4768693
18.
18.C. Wang, M. Xu, J. J. Gu, D. W. Zhang, and P. D. D. Ye, Electrochemical and Solid State Lett. 15, H51 (2012).
http://dx.doi.org/10.1149/2.001203esl
19.
19.Z. Tan, L. F. Zhao, J. Wang, and J. Xu, ECS Solid State Lett. 2, P61 (2013).
http://dx.doi.org/10.1149/2.003308ssl
20.
20.E. R. Cleveland, L. B. Ruppalt, B. R. Bennett, and S. M. Prokes, Appl. Surf. Sci. 277, 167 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.04.018
21.
21.A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B. R. Bennett, J. B. Boos, and K. C. Saraswat, J. Appl. Phys. 109, 114908 (2011).
http://dx.doi.org/10.1063/1.3590167
22.
22.Z. Y. Liu, B. Hawkins, and T. F. Kuech, J. of Vac. Sci. Technol. B 21, 71 (2003).
http://dx.doi.org/10.1116/1.1532023
23.
23.D. M. Zhernokletov, H. Dong, B. Brennan, M. Yakimov, V. Tokranov, S. Oktyabrsky, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 102 (2013).
24.
24.C. L. Lin, Y. K. Su, T. S. Se, and W. L. Li, Japanese J. Appl. Phys. Part 2-Lett. 37, L1543 (1998).
http://dx.doi.org/10.1143/JJAP.37.L1543
25.
25.S. McDonnell, D. M. Zhernokletov, A. P. Kirk, J. Kim, and R. M. Wallace, Appl. Surf. Sci. 257, 8747 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.05.034
26.
26.A. Greene, S. Madisetti, P. Nagaiah, M. Yakimov, V. Tokranov, R. Moore, and S. Oktyabrsky, Solid-State Electronics 78, 56 (2012).
http://dx.doi.org/10.1016/j.sse.2012.05.049
27.
27.E. M. Vogel, W. K. Henson, C. A. Richter, and J. S. Suehle, IEEE Trans. on Electron Devices 47, 601 (2000).
http://dx.doi.org/10.1109/16.824736
28.
28.Y. Yuan, L. Q. Wang, B. Yu, B. H. Shin, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, IEEE Electron Device Lett. 32, 485 (2011).
http://dx.doi.org/10.1109/LED.2011.2105241
29.
29.H. P. Chen, J. Ahn, P. C. McIntyre, and Y. Taur, IEEE Trans. on Electron Devices 60, 3920 (2013).
http://dx.doi.org/10.1109/TED.2013.2281298
30.
30.E. H. Nicollian and A. Goetzberger, Bell System Technical Journal 46, 1055 (1967).
http://dx.doi.org/10.1002/j.1538-7305.1967.tb01727.x
31.
31.R. Engel-Herbert, Y. Hwang, and S. Stemmer, J. Appl. Phys. 108, 124101 (2010).
http://dx.doi.org/10.1063/1.3520431
32.
32.P. S. Dutta, H. L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997).
http://dx.doi.org/10.1063/1.365356
33.
33.N. Bouarissa and H. Aourag, Infrared Physics & Technology 40, 343 (1999).
http://dx.doi.org/10.1016/S1350-4495(99)00020-1
34.
34.A. Ali, H. Madan, M. J. Barth, J. B. Boos, B. R. Bennett, and S. Datta, IEEE Electron Device Lett. 34, 360 (2013).
http://dx.doi.org/10.1109/LED.2012.2236881
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/12/10.1063/1.4905452
Loading
/content/aip/journal/adva/4/12/10.1063/1.4905452
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/12/10.1063/1.4905452
2014-12-31
2016-09-30

Abstract

In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD) high-k dielectric stacks with device-quality p-type GaSb(001) epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H/Ar plasma treatment and subsequently removed to air. High-k HfO and AlO/HfO bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS) capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/12/1.4905452.html;jsessionid=dCTtMb_Ke8m67Jtfe1b9ePMt.x-aip-live-06?itemId=/content/aip/journal/adva/4/12/10.1063/1.4905452&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/12/10.1063/1.4905452&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/12/10.1063/1.4905452'
Right1,Right2,Right3,